
Pachet, F. Perrot, J.-F. Rule Firing with Metarules. Software Engineering and Knowledge Engineering - SEKE '94, Jurmala, Lettonie.

Knowledge System Institute Ed. pp. 322-329, 21-23 juin 1994.

1

Rule Firing with Metarules

François Pachet
Jean-François Perrot

LAFORIA

Institut Blaise-Pascal, Boite 169
4, Place Jussieu

75252 Paris Cedex 05, France
E-mails: pachet/jfp@laforia.ibp.fr

Abstract

We describe a technique for the control of
production rules firing in an object-oriented setting.
This technique is based on the separation of control
rules from ordinary domain rules. Control rules
operate on "control objects" which are created
during the reasoning process of the rule base under
control. They constitute a separate and independent
rule base which contains a declarative specification
of the control strategy. Control objects build up an
inheritance hierarchy and the associated metabase is
constructed via rule base inheritance in a
hierarchical manner which parallels the taxonomy
of control object classes.

AI Topic: Knowledge Engineering
Domain area : Explicit control of reasoning
Language: Smalltalk-80
Status: Research Application
Effort: 1 person-years
Impact: This architecture is used for real

time monitoring of patients in
intensive care units.

1. Introduction

In 1987 Atkinson and Laursen showed how first-
order, forward-chaining rules could be
accommodated in Smalltalk-80 in an intimate and
seamless way [2]. Their system, called OPUS, can be
viewed as OPS-5 revisited from a Smalltalk
perspective. OPUS compiles rules using an object-

oriented realization of Forgy's Rete network. Among
its most salient features are:
 (1) that rules apply to all Smalltalk objects, thus
opening the way to innumerable applications ;
 (2) that rules are treated as Smalltalk methods and
rule bases as abstract classes, which permits reusing
most of the Smalltalk environment ;
 (3) that fireable rules, hence conflict sets, appear as
first-class objects, thereby giving a firm grip on
firing control problems.
They suggested several developments, notably a
scheme for the inheritance of rule bases deduced
from the standard class inheritance mechanism of
Smalltalk.

This paper is a sequel of their communication at
OOPSLA '87. The first author reimplemented OPUS
with several improvements as part of his doctoral
research [10], [11], [13]. He carried out the rule base
inheritance proposal [12]. A number of experiments
were conducted with his system, called NÉOPUS. In
the course of these experiments, a novel and
powerful technique for rule firing control emerged,
based on separate "control rule bases" operating on
specific "control objets". Control objects, however,
are perfectly ordinary Smalltalk objects, and control
rule bases are structurally identical with ordinary
rule bases. This technique is the subject-matter of
the present paper.

Our architecture allows the construction of a
hierarchy of reusable standard control bases,
associated with a parallel hierarchy of control object
classes, some of which are delivered with the
system. These standard bases can be used either

Pachet, F. Perrot, J.-F. Rule Firing with Metarules. Software Engineering and Knowledge Engineering - SEKE '94, Jurmala, Lettonie.

Knowledge System Institute Ed. pp. 322-329, 21-23 juin 1994.

2

directly or with refinement through rule base
inheritance (and class inheritance for the control
objects on which they operate), after the traditional
fashion of object-oriented programming.
Admittedly, writing such control rule bases does
require some practice. But factoring out the control
from the domain knowledge clearly brings a major
improvement in rule base engineering.
The paper is organized as follows: first we give a
short discussion of the OPUS and NÉOPUS systems;
then we describe the control problem in our precise
object-oriented setting, where control objects appear
in a very natural way ; finally we explain the
working of control rule bases and the use of rule
base inheritance.

2. Rule-based programming in Smalltalk-
80 : OPUS and NÉOPUS

2.1. From rules to objects

The need for combining object structures and rule-
based programming has been widely recognized.
The fact base of a rule-based program is a model of
the concrete situation that is currently being
processed. To bring some semantic structure to
facts, one naturally tends to see them as properties
of objects that build up a universe simulating the
concrete world. Individual facts are no longer
represented as such, their logical value is
ascertained by querying objects in the model. The
fact base is thus dissolved into an object-oriented
model of the world. This operation is so natural that
objects have crept into rule-based formalisms (in a
rudimentary form) as early as OPS-5.

As a consequence, the main rule-based knowledge
representation systems (KEE, ART and followers) all
have a strong object-oriented component. These
object formalisms, however, have usually been
defined to suit the reasoning process and rely on
frames rather than on objects in the sense of, say,
Smalltalk. Accordingly, they are more complex than
the standard structures of object-oriented
programming languages, i.e. class/instance and
inheritance mechanisms. Even when they are
defined using such a language, they usually
constitute an additional layer on top of the
"autochtonous" objects of the language (with the
interesting exception of Essaim [1]).

We proceed in the reverse direction, starting with a
standard object-oriented language and extending it
with a rule-based layer as "thin" and "seamless" as
possible. Our aim is to enrich the class/instance
paradigm with rule-based deductive mechanisms.
In order to benefit from the work of others, we have
chosen Smalltalk-80 as our language. Our system
makes full use of Smalltalk metaclasses. Its
translation to a language without this facility (e.g.
Eiffel) would require some rewriting but no
fundamental revision.

Note that the idea of enhancing the knowledge
representative capacities of standard object-oriented
languages, especially of Smalltalk, is quite common.
See [16] for an extension proposal to classification
mechanisms.

2.2. Forward-chaining rules and object-oriented
programming

Indeed, forward-chaining rules may be considered a
natural extension to ordinary object-oriented
programming. The execution of an object-oriented
program operates a series of updates of a certain set
of instances which constitutes a model of the world.
Much in the same way, rule-based programming (in
its forward-chaining version) uniquely relies on
repeatedly updating the fact base (this is no longer
true for backward chaining). The previous equation
"fact base = model of the world" links the two
techniques. Their basic difference is only in the
control structure, which is rigidly procedural (stack
discipline) for object-oriented programming and
non-deterministic for rules. Yelland [16] takes this as
ground for abandoning rules in his Smalltalk-based
knowledge representation system. Relying on the
OPUS and NÉOPUS experiences, we feel on the
contrary that this difference does not prevent rules
and methods to smoothly cooperate, and that it is
precisely what makes it worthwhile to introduce
rules in an object-oriented environment.

Turning to classical object-oriented style (the so-
called message passing) causes some trouble to the
knowledge representation specialist (see, e.g. [9],
[14]). Objects appear as closed entities which can be
addressed only via the interface defined by their
class. In particular, obtaining the logical value of

Pachet, F. Perrot, J.-F. Rule Firing with Metarules. Software Engineering and Knowledge Engineering - SEKE '94, Jurmala, Lettonie.

Knowledge System Institute Ed. pp. 322-329, 21-23 juin 1994.

3

their properties will necessarily involve the use of
procedures that must be explicitly defined in their
class, whereas in a frame-based model one has
direct access to the slots, which are felt to carry
semantic information. As Rechenmann observes
[15], the encapsulation principle gets in the way by
hiding the object structure (looked upon as mere
implementation detail by software engineers) and
hampers the declarative and explicative capacities
of the system.

This problem is visible in at least two points in the
NÉOPUS system and its appearance requires
additional information from the programmer: (1)
the need to declare explicitly which objects have
significantly changed their state as a consequence of
rule firing (the modified action, already present in
OPUS) and (2) the impossibility to elicit the goal of a
rule from its text, hence the need of an additional
field in the rule format to provide this type of
information (which is called here an assertion). These
are clearly at variance from the principles of
declarative knowledge representation. However, we
feel that the benefit gained from potentially
applying rules to the whole universe of object-
oriented models created by object-oriented
programmers does warrant these restrictions from
the generally accepted principles.

2.3. Rules that apply to any object

The main issue from the point of view of
applicability is generality, i.e. the possibility to
define rules applicable to objects that have been
defined independently, typically in an already
existing application. In our view, this is the main
achievement of OPUS. The NÉOPUS experience
bears out the validity of this approach. Rule-based
components have effectively been added to
independently designed systems, see e.g. [10], [17].

From the point of view of knowledge
representation, this attitude amounts to considering
that any programmed application can be seen as the
representation of a certain knowledge, albeit in a
clumsy and opaque way. When the programming
language is object-oriented, however, the categories
used by the language (class, instance, inheritance)
give a non trivial cognitive structure to the
represented knowledge, so that rule-based
deduction can be applied to it in a meaningful way

(which would be hardly possible with procedural
languages).

From the technical point of view, the fact that every
object has a well-defined communication interface
(defined by its class) can be turned into an
advantage by deciding that rules will be expressed
entirely with expressions of the underlying
language (Smalltalk-80), without specific linguistic
constructs. Conditions are expressions with boolean
value, action parts are procedure calls (via
messages).

2.4. Rule bases as abstract classes

The first question to be solved in our setting is the
ontological status of rules and of rule bases. One is
naturally tempted to declare that rules will be first-
class objects, and rule bases as well. Following
Atkinson & Laursen, we take a less naïve approach
and stress the predominantly textual nature of rules
and rule bases. The basic idea is to treat OPUS rules
as Smalltalk methods.
As is well known, all entities manipulated by
Smalltalk are considered as first-class objects. At the
creation of the system, however, some initial objects
must be read in. Those objects must necessarily
possess a faithful textual representation. This is
preeminently the case for classes : classes have a
dual representation as text (source form) and as
objects (instances of metaclasses). Methods also
appear both as text (human-readable) and under
compiled form. In both cases, the Smalltalk compiler
creates the object representation from the text.

We follow a similar pattern to combine the textual
nature of rules and their reification as objects. The
process will be more complex and involve the
notion of fireable rule and the operation not only of
the compiler but also of the Rete network.

Rule bases may be viewed as analogous with
classes, since they are primarily text, needing a
compilation process to render them operative. They
differ from classes in a fundamental way, for they
are utterly incapable of having instances. However,
Smalltalk practice makes great use of so called
"abstract classes", which are not intended to create
instances, but represent knowledge to be inherited
by subclasses. Following Atkinson & Laursen, we

Pachet, F. Perrot, J.-F. Rule Firing with Metarules. Software Engineering and Knowledge Engineering - SEKE '94, Jurmala, Lettonie.

Knowledge System Institute Ed. pp. 322-329, 21-23 juin 1994.

4

shall treat rule bases as abstract classes, subclasses
of class RuleBase. As with all Smalltalk classes, we
shall endow them with object properties and
methods defined in their metaclasses, which are
subclasses of the metaclass RuleBase class.
Of course, the Smalltalk compilation process is
redefined for these classes. To each rule base is
associated a Rete network. Each rule compilation in
a given rule base will result in an updating of the
rule base ’s network, according to the standard Rete
policy, i.e. one Rete node per condition. One extra
node is also created for the action part of the rule
(called a terminal node). The main idea of the OPUS
compilation is to associate a Smalltalk method to
every condition and to the conclusion part of an
OPUS rule. Those methods are compiled in a
separate class (called dynamic class), which is
uniquely associated to each rule base, and are
associated to the corresponding Rete nodes.

The methods associated with the premisses of a rule
will implement the test required for the tokens
propagated in the network. The method
representing an action part will be associated with
so-called terminal nodes, which will be used for
representing fireable rules (see section 3.2)

2.5. Rule base inheritance

Since rule bases are classes that necessitate a
particular compilation process, the status of
inheritance for those classes has to be defined. A
particular inheritance scheme for rule bases has
been developed (rule base inheritance or RBI) that
transpose the intuition of inheritance as found in
class-based languages, i.e. a restricted specialization
mechanism, in the world of rules. This mechanism
interprets the inheritance relation between rule
bases as a particular control strategy, that consists in
firing rules defined in the lowest base of the
inheritance tree (see [12] for details). Similarly to
class-based languages, rule bases have now two
functions : a function as a set of rules, representing a
certain knowledge, and a function as a sub-base
generator specialized by subclassing.

3. Control and Control Objects

3.1. Control of rule firing, conflict sets

The control problem in forward-chaining systems is
a direct consequence of the non-deterministic
control structure: at each cycle, the system has to
chose which of its potential actions it should
perform. The main task of the inference engine is
therefore to manage the set of these potential
actions, referred to as the conflict set. Many systems
have emphasized the need for explicit and separate
representation of control (see e.g. [3], [5], [6]) or the
reflexive aspect of meta level architecture [3]. Cohen
& al [7] propose an explicit and powerful
representation of control in terms of interacting
"strategy frames", but the proposed formalism is not
applicable in the context of object-oriented
programming. Following this tradition of explicit
and separate representation of control, we revisit
the control problem in our object-oriented context.

3.2. The control problem in the NÉOPUS framework

Rules are subject to much more manipulation by a
rule-based system than are methods by the runtime
of an object-oriented language. Therefore the
analogy method/rule cannot be followed too far.
The main point is that the entities that are really
manipulated are not the rules themselves, but their
instances known as "fireable rules". These appear
quite naturally as objects generated through the
operation of the Rete network.

The Rete network as interpreted by Atkinson &
Laursen bears some analogy with a blast furnace
continuously transforming iron ore into metal. It has
entry points labeled with the classes that appear in
the various rules of rule base, and terminal nodes
that are labeled with the rules. Objects from the
context are fed into it, as soon as they are created or
modified, through the entry points that correspond
to their classes. They are packaged in specific objects
called tokens that are then propagated through the
network until they reach the final nodes. A token
which reaches the terminal node labeled with rule R
contains a complete instanciation for R's variables,
yielding a fireable rule. Therefore the fireable rule is
faithfully represented by the pair (terminal node,
token), which is a first-class object in an obvious
manner. See [13] for details.
Accordingly, class FireableRule defines access
methods that permit querying about either the rule
itself (e.g. number of premisses) or the filtered

Pachet, F. Perrot, J.-F. Rule Firing with Metarules. Software Engineering and Knowledge Engineering - SEKE '94, Jurmala, Lettonie.

Knowledge System Institute Ed. pp. 322-329, 21-23 juin 1994.

5

objects that make up the token, and the all-
important method fire.

Since fireable rules are first class objects, the conflict
set as a collection of fireable rules appears also as an
object, instance of class ConflictSet. By
adequately defining the behavior of this class, we
can program several control strategies.
The final control act is to choose a fireable rule in the
conflict set and to fire it. In our framework, this is
operated in a natural way by sending adequate
messages to the conflict set as object.

In simple cases, the choice of the rule to be fired is
made via a fixed criterion applied to the conflict set
itself, e.g. choosing the most constrained rule, or the
newest one, etc. In such a case, a method of class
ConflictSet does the job. It is then activated in a
loop by a method addressing the rule base as object,
i.e. defined in the metaclass of class RuleBase or
of one of its subclasses. This basic loop (method
called proceduralEvaluate) is easy to define in a
procedural manner, since all the pertaining
information is accessible from the rule base.

3.3 Control Objects

It is often necessary to base the choice of the rule to
be fired on quite elaborate information, such as a
history, a trace of rule firings, an agenda, a tree of
goals etc. The additional features needed might be
added to class ConflictSet (via subclassing). But
this would overload it with information that may be
quite complex and foreign to its primary role.

We propose to formalize this information without
interfering with the definition of rule bases and
conflict sets, by means of separate entities which we
call control objects. This is not a really new idea. As
we shall see, well-known control strategies such as
subgoaling make use of specific objects that clearly
fall into our category of control objects. We
systematize this idea with the full backing of object-
oriented programming.

The main idea behind our notion of a control object
is to introduce an independent object that will
contain all the necessary information pertaining to
the control of a rule base. This primary object, called
an Evaluator, represents the present state of the
reasoning process. This representation can carry

more or less details, according to the structural
complexity of the evaluators involved.

In its most elementary form, an evaluator has two
attributes status and stopCondition. Status takes
discrete atomic values (e.g. #start, #loop, #end),
whereas stopCondition is a boolean expression (in
Smalltalk, a block). This minimum definition is
sufficient to represent the standard activation of a
rule base, as defined in the procedural architecture.
The interesting aspect of this notion is two-fold.
Firstly, evaluators being independent objects, they
are reusable and application-independent. Secondly,
the advantage of having a separate class appears
when specifying more complex strategies: class
Evaluator is designed to be specialized by
subclassing, and the specialization's will not
interfere with the rule base or conflict set
definitions. More complex control strategies usually
require the introduction of new data structures.
These structures will be represented by attributes of
particular subclasses of Evaluator, following the
pure object-oriented style.

For example, managing the notion of rule pack
whose sequence is declared in an agenda is now
straightforward. The class EvaluatorWithAgenda
is introduced as a subclass of Evaluator. It has an
additional attribute that contains an instance of class
Agenda. Class Agenda is itself defined by, say, a list
of rule packs to evaluate sequentially, and an index
to the current rule pack. This new class of evaluator
will be reusable by all the rule bases requiring this
kind of control (see e.g. [8]).

The same scenario applies for any control strategy
that requires additional structure, such as:
managing a history or a trace of rule firing, selecting
rules according to priority lists, and so forth.

3.4. Dynamically constructed control objects

In many applications, control information has to be
somehow integrated in domain knowledge. A
typical example is the so-called subgoaling technique
presented e.g. by Brownston for the Monkey &
Bananas problem [4]. Specific objects called goals are
introduced and maintained together with the
domain objects. They are organized in a tree-like
hierarchy. Most of the rules have at least one

Pachet, F. Perrot, J.-F. Rule Firing with Metarules. Software Engineering and Knowledge Engineering - SEKE '94, Jurmala, Lettonie.

Knowledge System Institute Ed. pp. 322-329, 21-23 juin 1994.

6

condition which deals with a goal, and many rules
have conclusions that create or modify goals.

In our architecture, the objects necessary for
managing subgoaling are naturally represented by
adequate subclasses of evaluators. In the Monkey &
Bananas problem, a class EvaluatorSubGoaling
will be defined, as a subclass of Evaluator, that
adds the attributes necessary for managing
father/son relationships between goals and their
subgoals.

3.5. Talking about a fireable rule : assertions

However, the choice of the rule to be fired may
require to know more about the fireable rule than
simple syntactic information. The main thing to
know about a rule is the consequence of its firing on
the simulated world. But this information is not
easily accessible, essentially because of the
encapsulation principle. Indeed, as we saw in
section 2.3, rule action parts are represented either
as texts or compiled methods. Neither of these
representations is suitable for manipulation by an
inference engine. In other words, because attributes
are hidden by the communication interface, the
system does not know anything about what a rule
does before it actually fires it.

Our solution to this problem is to introduce a new
syntactic construct that gives the programmer the
ability to state the intention of a rule. This construct,
called an assertion is basically a representation of a
fact about the world (in the logical sense). It is
expressed as a Smalltalk expression (between
brackets {}) and is manipulated as an instantiated
syntactic tree. Each NÉOPUS rule text has an
additional field (the finalState field) that
contains such an assertion. When a fireable rule is
created, the assertion is instantiated with the objects
that match the rule.

For example, here is a rule taken from the M&B rule
base. This rule states that if a monkey and a physical
object verify a set of conditions, then the monkey
takes the object (method take:). The finalState
part of the rule declares that in this case, the
monkey will hold it, by the assertion {s isHolding: o}
:

holdObjectNotCeiling
 | Monkey s. PhysicalObject o |
 o weight = #light.
 o isNotOn: #ceiling.
 s isOn: #floor.
 s holdsNothing.
 s isAt: o at.
actions
 s take: o.
 o modified. s modified.
finalState
 {s isHolding: o}

Those assertions may now be used for specifying
more elaborate control strategies, involving
dynamically created control objects. Since assertions
are also boolean expressions, they may be used for
representing the stopCondition of evaluators,
instead of the former blocks (as seen in 3.3).

4. Metarules

We further propose to maintain these control objects
by means of a separate set of rules, called control
rules or metarules. These rules will deal only with
control objects and with the conflict set. They
constitute a separate rule base, called metabase,
which completely specifies the control strategy.

4.1. Substitution - regression

We propose an architecture for managing control
objects that is completely substituted to the standard
procedural activation (the method
proceduralEvaluate seen in 3.2). In this scheme,
a metabase is associated to the current rule base to
be activated. The activation of the rule base consists
simply in activating (recursively) its metabase. The
basic inference loop, choice of rules to be fired, and
more generally the management of control objects
will all be defined by rules of the metabase. More
precisely, the firing of a metarule operates either a
modification of the control model (universe of
control objects) and/or the firing of a domain rule
via the conflict set of the rule base being activated.

For example, here is a metarule taken from the M&B
problem, that generate sub goals. This metarule is
defined in the metabase of the M&B rule base, and
states that if there is a goal for the monkey to hold a
physical object, and that certain conditions are satisfied,
then a new goal to be on the floor should be created.

Pachet, F. Perrot, J.-F. Rule Firing with Metarules. Software Engineering and Knowledge Engineering - SEKE '94, Jurmala, Lettonie.

Knowledge System Institute Ed. pp. 322-329, 21-23 juin 1994.

7

Goals are represented as assertions contained in the
stopCondition attribute of evaluators.

holdObjectNotCeilingOn
 |EvaluatorSubGoaling e. Local s o |

 e status = #loop.
 e goalIsThat: {s isHolding: o}.
 o weight = #light.
 o isNotOn: #ceiling.
 s isNotOn: #floor.
 s isAt: o at.
actions
 |e2|
 e2 <- e newSon. “evaluator created”
 e2 stopCondition: {s isOn: #floor}.
 e2 go

Here is an other example of metarule that actually
fires a rule from the rule base being activated. In the
M&B problem, this is typically the case when there
is a rule in the domain rule base whose
finalState matches the stopCondition of an
evaluator.

 satisfyGoal
|EvaluatorSubGoaling e. local cs rule|
 e status = #loop.
 cs = e conflictSet.
 e satisfied not.
 rule := cs ruleSatisfying:
 e stopCondition.
actions
 cs fire: rule.
 e status: #end.
 cs modified.
 e modified. e father modified

Of course, this architecture raises a regression
problem : how is the metabase itself activated ? This
problem is simply solved by forbidding loops in the
control tree : a rule base is either activated in a
procedural manner or by the activation of its
metabase. A metabase may not be activated by
itself.

It is important to note here that the activation of a
rule base is totally separated from the activation of
its metabase(s) from a Rete point of view. Each rule
base has an associated Rete network which does not
interfere with the metabase’s network. Rete
networks propagations can be seen as series of un-
interrupted tides. A the end of each tide, the conflict
set of the rule base is updated and the procedure
that caused the tide is given back control. This
procedure is either the procedural activation

method (proceduralEvaluate) or the action part
of a metarule (see e.g. metarule satisfyGoal). In
this latter case, the rule firing will usually be
followed by an other tide in the metabase’s network,
caused by a modified declaration (such as
conflictSet modified in metarule
satisfyGoal).

4.2. Hierarchies of control objects and metabases

The NÉOPUS experience in writing metabases
convinced us that metabases share a lot of common
behavior. Because writing metarules is not a trivial
task, this common behavior is worth factoring. This
the main motivation in using rule base inheritance
for writing metabases. Each metabase is defined as a
sub-base of an existing metabase. A root metabase,
called DefaultMeta defines a standard control
behavior whose effect is similar to that of the
proceduralEvaluate method.

Control is therefore expressed as a double
specification : structure is defined in the evaluator
objects, and their management in the metabase. This
double programming is effectively achieved by the
support of class inheritance for evaluators, and rule
base inheritance for metabases. Those two
inheritance schemes are not necessarily parallel:
evaluator classes may support various types of
metabases.

4.3. Taxonomies of metabases

A taxonomy of metabases is built, starting from root
base DefaultMeta. Metabases become more and
more complex as the tree grows, and more and
more application-dependent. A good example of the
genericity of metabase can be found in [8], where
the control of a real-time rule-based system is
defined as a metabase with a five-level inheritance
tree. The first three levels (starting from
DefaultMeta) are general and application
independent. They define a control strategy that
fires rules in parallel, according to a dynamically
constructed agenda. The last ones are application-
dependent, and contain high priority metarules. The
system works in a real time closed loop and
monitors patient in intensive care units.
A yet more sophisticated example is an extension of
NÉOPUS based on an novel architecture for
explanation-based learning [18]. In this application,

Pachet, F. Perrot, J.-F. Rule Firing with Metarules. Software Engineering and Knowledge Engineering - SEKE '94, Jurmala, Lettonie.

Knowledge System Institute Ed. pp. 322-329, 21-23 juin 1994.

8

evaluator objects are dynamically created to learn
about the sequence of firings, and generate more
efficient control metarules.

5. Conclusion

We have introduced the notion of control objects
together with metarules. The specification of control
in this architecture gives the rule base programmer
all the power and capacities of abstraction of object-
oriented programming, to specify independent and
reusable control knowledge. This is achieved by
proposing two inheritance schemes that combine
elegantly with each other, and a library of general
and ready-to-use control metabases. Our approach
is validated by the use of the system in various real
world applications.

6. References

[1] Alizon F., Huet G. Essaim: A Smalltalk

Programming Environment for the Construction of
Expert Systems. Technical report, CNET
NT/LAA/SLC/299, Lanion, France, (1988).

[2] Atkinson R., Laursen J. Opus : A Smalltalk
Production System. Proc. of OOPSLA'87 pp. 377-
387, (1987).

[3] Batali J. Reasoning about self-control. In Meta-
level Architectures and Reflection, P. Maes et
D. Nardi eds. North Holland, (1988).

[4] Brownston L., Farrell R., Kant E., Martin N.
Programming Expert Systems in OPS5. An
Introduction to Rule-Based Programming.
Addison-Wesley Publishing Company, (1985).

[5] Chun, R. Perry B. An Environment for the control
and Software Integration of Expert Systems. Proc.
of SEKE '93, pp. 499-506, (1993).

[6] Clancey, W. The advantages of Abstract Control
Knowledge in Expert-System Design. Report N°
STAN-CS-83-995. Stanford University, (1983).

[7] Cohen, P. Delisio, J. Hart, D. A Declarative
Representation of Control Knowledge. IEEE
transactions on Systems, Man, and Cybernetics,
Vol 19, n 3, May/June (1989).

[8] Dojat M, F. Pachet. NéoGanesh: an Extendable
Knowledge-Based System for the Control of
Mechanical Ventilation. 14 th Annual
International Conference of the IEEE

Engineering in Medicine and Biology Society,
October 29-Novembre 1st, Paris (1992).

[9] Nebel, B. Reasoning and Revision in Hybrid
Representation Systems. Lecture Notes in AI 422,
Springer (1990).

[10] Pachet F. Mixing Rules and Objects: An
experiment in the world of Euclidean Geometry.
ISCIS V, 30 Oct. - 2 Nov., Nevsehir, Turkey, pp.
797-805, (1990).

[11] Pachet F. Reasoning with objects: the NéOpus
environment. Proc. of Int. Conf. East EurOOpe,
Bratislava, Tchécoslovaquia, Sept. (1991).

[12] Pachet F. Rule base inheritance. Conference on
Object-centered Representations, La grande
Motte, France, June (1992).

[13] Pachet F. Knowledge Representation with objects
and rules: the NéOpus system. PhD thesis, Paris
VI University, Sept. (1292).

[14] Patel-Schneider, P. Practical, Object-Based
Knowledge Representation for Knowledge-Based
systems. Information Systems (Oxford), Vol 15,
N. 1, pp 9-19, (1990).

[15] Rechenmann, F. personal communication (1992).
[16] Yelland, Ph. M. Experimental Classification

Facilities for Smalltalk, Proc. of OOPSLA '92, p.
235-246, (1992).

[17] Wolinski, F. Perrot, J.-F. Representation of
complex Objects: Multiple Facets with Part-Whole
Hierarchies. Proc. of European Conference on
Object-Oriented Programming, Geneva, July
(1991).

[18] Zerr, F. ARIANE, Integration of an explanation-
based learning mechanism in an industrial expert
system shell. PhD thesis, Université Paris-Sud,
(1992).

