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Abstract 

 
We describe a technique for the control of 
production rules firing in an object-oriented setting. 
This technique is based on the separation of control 
rules from ordinary domain rules. Control rules 
operate on "control objects" which are created 
during the reasoning process of the rule base under 
control. They constitute a separate and independent 
rule base which contains a declarative specification 
of the control strategy. Control objects build up an 
inheritance hierarchy and the associated metabase is 
constructed via rule base inheritance in a 
hierarchical manner which parallels the taxonomy 
of control object classes. 
 
AI Topic: Knowledge Engineering  
Domain area : Explicit control of reasoning 
Language:  Smalltalk-80 
Status:  Research Application 
Effort: 1 person-years 
Impact:  This architecture is used for real 

time monitoring of patients in 
intensive care units. 

 
 
1. Introduction 
 
In 1987 Atkinson and Laursen showed how first-
order, forward-chaining rules could be 
accommodated in Smalltalk-80 in an intimate and 
seamless way [2]. Their system, called OPUS, can be 
viewed as OPS-5 revisited from a Smalltalk 
perspective. OPUS compiles rules using an object-

oriented realization of Forgy's Rete network. Among 
its most salient features are: 
   (1) that rules apply to all Smalltalk objects, thus 
opening the way to innumerable applications ;  
   (2) that rules are treated as Smalltalk methods and 
rule bases as abstract classes, which permits reusing 
most of the Smalltalk environment ; 
   (3) that fireable rules, hence conflict sets, appear as 
first-class objects, thereby giving a firm grip on 
firing control problems. 
They suggested several developments, notably a 
scheme for the inheritance of rule bases deduced 
from the standard class inheritance mechanism of 
Smalltalk. 
 
This paper is a sequel of their communication at 
OOPSLA '87. The first author reimplemented OPUS 
with several improvements as part of his doctoral 
research [10], [11], [13]. He carried out the rule base 
inheritance proposal [12]. A number of experiments 
were conducted with his system, called NÉOPUS. In 
the course of these experiments, a novel and 
powerful technique for rule firing control emerged, 
based on separate "control rule bases" operating on 
specific "control objets". Control objects, however, 
are perfectly ordinary Smalltalk objects, and control 
rule bases are structurally identical with ordinary 
rule bases. This technique is the subject-matter of 
the present paper. 
 
Our architecture allows the construction of a 
hierarchy of reusable standard control bases, 
associated with a parallel hierarchy of control object 
classes, some of which are delivered with the 
system. These standard bases can be used either 
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directly or with refinement through rule base 
inheritance (and class inheritance for the control 
objects on which they operate), after the traditional 
fashion of object-oriented programming. 
Admittedly, writing such control rule bases does 
require some practice. But factoring out the control 
from the domain knowledge clearly brings a major 
improvement in rule base engineering. 
The paper is organized as follows: first we give a 
short discussion of the OPUS and NÉOPUS systems; 
then we describe the control problem in our precise 
object-oriented setting, where control objects appear 
in a very natural way ; finally we explain the 
working of control rule bases and the use of rule 
base inheritance. 
 
 
2. Rule-based programming in Smalltalk-
80 : OPUS and NÉOPUS 
 
2.1. From rules to objects 
 
The need for combining object structures and rule-
based programming has been widely recognized. 
The fact base of a rule-based program is a model of 
the concrete situation that is currently being 
processed. To bring some semantic structure to 
facts, one naturally tends to see them as properties 
of objects that build up a universe simulating the 
concrete world. Individual facts are no longer 
represented as such, their logical value is 
ascertained by querying objects in the model. The 
fact base is thus dissolved into an object-oriented 
model of the world. This operation is so natural that 
objects have crept into rule-based formalisms (in a 
rudimentary form) as early as OPS-5.  
 
As a consequence, the main rule-based knowledge 
representation systems (KEE, ART and followers) all 
have a strong object-oriented component. These 
object formalisms, however, have usually been 
defined to suit the reasoning process and rely on 
frames rather than on objects in the sense of, say, 
Smalltalk. Accordingly, they are more complex than 
the standard structures of object-oriented 
programming languages, i.e. class/instance and 
inheritance mechanisms. Even when they are 
defined using such a language, they usually 
constitute an additional layer on top of the 
"autochtonous" objects of the language (with the 
interesting exception of Essaim [1]). 

 
We proceed in the reverse direction, starting with a 
standard object-oriented language and extending it 
with a rule-based layer as "thin" and "seamless" as 
possible. Our aim is to enrich the class/instance 
paradigm with rule-based deductive mechanisms. 
In order to benefit from the work of others, we have 
chosen Smalltalk-80 as our language. Our system 
makes full use of Smalltalk metaclasses. Its 
translation to a language without this facility (e.g. 
Eiffel) would require some rewriting but no 
fundamental revision. 
 
Note that the idea of enhancing the knowledge 
representative capacities of standard object-oriented 
languages, especially of Smalltalk, is quite common. 
See [16] for an extension proposal to classification 
mechanisms. 
 
 
2.2. Forward-chaining rules and object-oriented 
programming 
 
Indeed, forward-chaining rules may be considered a 
natural extension to ordinary object-oriented 
programming. The execution of an object-oriented 
program operates a series of updates of a certain set 
of instances which constitutes a model of the world. 
Much in the same way, rule-based programming (in 
its forward-chaining version) uniquely relies on 
repeatedly updating the fact base (this is no longer 
true for backward chaining). The previous equation 
"fact base = model of the world" links the two 
techniques. Their basic difference is only in the 
control structure, which is rigidly procedural (stack 
discipline) for object-oriented programming and 
non-deterministic for rules. Yelland [16] takes this as 
ground for abandoning rules in his Smalltalk-based 
knowledge representation system. Relying on the 
OPUS and NÉOPUS experiences, we feel on the 
contrary that this difference does not prevent rules 
and methods to smoothly cooperate, and that it is 
precisely what makes it worthwhile to introduce 
rules in an object-oriented environment. 
 
Turning to classical object-oriented style (the so-
called message passing) causes some trouble to the 
knowledge representation specialist (see, e.g. [9], 
[14]). Objects appear as closed entities which can be 
addressed only via the interface defined by their 
class. In particular, obtaining the logical value of 
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their properties will necessarily involve the use of 
procedures that must be explicitly defined in their 
class, whereas in a frame-based model one has 
direct access to the slots, which are felt to carry 
semantic information. As Rechenmann observes 
[15], the encapsulation principle gets in the way by 
hiding the object structure (looked upon as mere 
implementation detail by software engineers) and 
hampers the declarative and explicative capacities 
of the system.  
 
This problem is visible in at least two points in the 
NÉOPUS system and its appearance requires 
additional information from the programmer: (1) 
the need to declare explicitly which objects have 
significantly changed their state as a consequence of 
rule firing (the modified action, already present in 
OPUS) and (2) the impossibility to elicit the goal of a 
rule from its text, hence the need of an additional 
field in the rule format to provide this type of 
information (which is called here an assertion). These 
are clearly at variance from the principles of 
declarative knowledge representation. However, we 
feel that the benefit gained from potentially 
applying rules to the whole universe of object-
oriented models created by object-oriented 
programmers does warrant these restrictions from 
the generally accepted principles. 
 
2.3. Rules that apply to any object 
 
The main issue from the point of view of 
applicability is generality, i.e. the possibility to 
define rules applicable to objects that have been 
defined independently, typically in an already 
existing application. In our view, this is the main 
achievement of OPUS. The NÉOPUS experience 
bears out the validity of this approach. Rule-based 
components have effectively been added to 
independently designed systems, see e.g. [10], [17]. 
 
From the point of view of knowledge 
representation, this attitude amounts to considering 
that any programmed application can be seen as the 
representation of a certain knowledge, albeit in a 
clumsy and opaque way. When the programming 
language is object-oriented, however, the categories 
used by the language (class, instance, inheritance) 
give a non trivial cognitive structure to the 
represented knowledge, so that rule-based 
deduction can be applied to it in a meaningful way 

(which would be hardly possible with procedural 
languages). 
 
From the technical point of view, the fact that every 
object has a well-defined communication interface 
(defined by its class) can be turned into an 
advantage by deciding that rules will be expressed 
entirely with expressions of the underlying 
language (Smalltalk-80), without specific linguistic 
constructs. Conditions are expressions with boolean 
value, action parts are procedure calls (via 
messages). 
 
   
2.4. Rule bases as abstract classes 
  
The first question to be solved in our setting is the 
ontological status of rules and of rule bases. One is 
naturally tempted to declare that rules will be first-
class objects, and rule bases as well. Following 
Atkinson & Laursen, we take a less naïve approach 
and stress the predominantly textual nature of rules 
and rule bases. The basic idea is to treat OPUS rules 
as Smalltalk methods.  
As is well known, all entities manipulated by 
Smalltalk are considered as first-class objects. At the 
creation of the system, however, some initial objects 
must be read in. Those objects must necessarily 
possess a faithful textual representation. This is 
preeminently the case for classes : classes have a 
dual representation as text (source form) and as 
objects (instances of metaclasses). Methods also 
appear both as text (human-readable) and under 
compiled form. In both cases, the Smalltalk compiler 
creates the object representation from the text. 
 
We follow a similar pattern to combine the textual 
nature of rules and their reification as objects. The 
process will be more complex and involve the 
notion of fireable rule and the operation not only of 
the compiler but also of the Rete network. 
 
Rule bases may be viewed as analogous with 
classes, since they are primarily text, needing a 
compilation process to render them operative. They 
differ from classes in a fundamental way, for they 
are utterly incapable of having instances. However, 
Smalltalk practice makes great use of so called 
"abstract classes", which are not intended to create 
instances, but represent knowledge to be inherited 
by subclasses. Following Atkinson & Laursen, we 
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shall treat rule bases as abstract classes, subclasses 
of class RuleBase. As with all Smalltalk classes, we 
shall endow them with object properties and 
methods defined in their metaclasses, which are 
subclasses of the metaclass RuleBase class. 
Of course, the Smalltalk compilation process is 
redefined for these classes. To each rule base is 
associated a Rete network. Each rule compilation in 
a given rule base will result in an updating of the 
rule base ’s network, according to the standard Rete 
policy, i.e. one Rete node per condition. One extra 
node is also created for the action part of the rule 
(called a terminal node). The main idea of the OPUS 
compilation is to associate a Smalltalk method to 
every condition and to the conclusion part of an 
OPUS rule. Those methods are compiled in a 
separate class (called dynamic class), which is 
uniquely associated to each rule base, and are 
associated to the corresponding Rete nodes. 
 
The methods associated with the premisses of a rule 
will implement the test required for the tokens 
propagated in the network. The method 
representing an action part will be associated with 
so-called terminal nodes, which will be used for 
representing fireable rules (see section 3.2) 
 
2.5. Rule base inheritance 
 
Since rule bases are classes that necessitate a 
particular compilation process, the status of 
inheritance for those classes has to be defined. A 
particular inheritance scheme for rule bases has 
been developed (rule base inheritance or RBI) that 
transpose the intuition of inheritance as found in 
class-based languages, i.e. a restricted specialization 
mechanism, in the world of rules. This mechanism 
interprets the inheritance relation between rule 
bases as a particular control strategy, that consists in 
firing rules defined in the lowest base of the 
inheritance tree (see [12] for details). Similarly to 
class-based languages, rule bases have now two 
functions : a function as a set of rules, representing a 
certain knowledge, and a function as a sub-base 
generator specialized by subclassing. 
 
3. Control and Control Objects 
 
3.1. Control of rule firing, conflict sets 
 

The control problem in forward-chaining systems is 
a direct consequence of the non-deterministic 
control structure: at each cycle, the system has to 
chose which of its potential actions it should 
perform. The main task of the inference engine is 
therefore to manage the set of these potential 
actions, referred to as the conflict set. Many systems 
have emphasized the need for explicit and separate 
representation of control (see e.g. [3], [5], [6]) or the 
reflexive aspect of meta level architecture [3]. Cohen 
& al [7] propose an explicit and powerful 
representation of control in terms of interacting 
"strategy frames", but the proposed formalism is not 
applicable in the context of object-oriented 
programming. Following this tradition of explicit 
and separate representation of control, we revisit 
the control problem in our object-oriented context. 
 
3.2. The control problem in the NÉOPUS framework 
 
Rules are subject to much more manipulation by a 
rule-based system than are methods by the runtime 
of an object-oriented language. Therefore the 
analogy method/rule cannot be followed too far. 
The main point is that the entities that are really 
manipulated are not the rules themselves, but their 
instances known as "fireable rules". These appear 
quite naturally as objects generated through the 
operation of the Rete network. 
 
The Rete network as interpreted by Atkinson & 
Laursen bears some analogy with a blast furnace 
continuously transforming iron ore into metal. It has 
entry points labeled with the classes that appear in 
the various rules of rule base, and terminal nodes 
that are labeled with the rules. Objects from the 
context are fed into it, as soon as they are created or 
modified, through the entry points that correspond 
to their classes. They are packaged in specific objects 
called tokens that are then propagated through the 
network until they reach the final nodes. A token 
which reaches the terminal node labeled with rule R 
contains a complete instanciation for R's variables, 
yielding a fireable rule. Therefore the fireable rule is 
faithfully represented by the pair (terminal node, 
token), which is a first-class object in an obvious 
manner. See [13] for details. 
Accordingly, class FireableRule defines access 
methods that permit querying about either the rule 
itself (e.g. number of premisses) or the filtered 
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objects that make up the token, and the all-
important method fire. 
 
Since fireable rules are first class objects, the conflict 
set as a collection of fireable rules appears also as an 
object, instance of class ConflictSet. By 
adequately defining the behavior of this class, we 
can program several control strategies. 
The final control act is to choose a fireable rule in the 
conflict set and to fire it. In our framework, this is 
operated in a natural way by sending adequate 
messages to the conflict set as object.  
  
In simple cases, the choice of the rule to be fired is 
made via a fixed criterion applied to the conflict set 
itself, e.g. choosing the most constrained rule, or the 
newest one, etc. In such a case, a method of class 
ConflictSet does the job. It is then activated in a 
loop by a method addressing the rule base as object, 
i.e. defined in the metaclass of class RuleBase or 
of one of its subclasses. This basic loop (method 
called proceduralEvaluate) is easy to define in a 
procedural manner, since all the pertaining 
information is accessible from the rule base. 
 
3.3 Control Objects 
 
It is often necessary to base the choice of the rule to 
be fired on quite elaborate information, such as a 
history, a trace of rule firings, an agenda, a tree of 
goals etc. The additional features needed might be 
added to class ConflictSet (via subclassing). But 
this would overload it with information that may be 
quite complex and foreign to its primary role.  
 
We propose to formalize this information without 
interfering with the definition of rule bases and 
conflict sets, by means of separate entities which we 
call control objects. This is not a really new idea. As 
we shall see, well-known control strategies such as 
subgoaling make use of specific objects that clearly 
fall into our category of control objects. We 
systematize this idea with the full backing of object-
oriented programming. 
    
The main idea behind our notion of a control object 
is to introduce an independent object that will 
contain all the necessary information pertaining to 
the control of a rule base. This primary object, called 
an Evaluator, represents the present state of the 
reasoning process. This representation can carry 

more or less details, according to the structural 
complexity of the evaluators involved. 
  
In its most elementary form, an evaluator has two 
attributes status and stopCondition. Status takes 
discrete atomic values (e.g. #start, #loop, #end), 
whereas stopCondition is a boolean expression (in 
Smalltalk, a block). This minimum definition is 
sufficient to represent the standard activation of a 
rule base, as defined in the procedural architecture. 
The interesting aspect of this notion is two-fold. 
Firstly, evaluators being independent objects, they 
are reusable and application-independent. Secondly, 
the advantage of having a separate class appears 
when specifying more complex strategies: class 
Evaluator is designed to be specialized by 
subclassing, and the specialization's will not 
interfere with the rule base or conflict set 
definitions. More complex control strategies usually 
require the introduction of new data structures. 
These structures will be represented by attributes of 
particular subclasses of Evaluator, following the 
pure object-oriented style. 
 
For example, managing the notion of rule pack 
whose sequence is declared in an agenda is now 
straightforward. The class EvaluatorWithAgenda 
is introduced as a subclass of Evaluator. It has an 
additional attribute that contains an instance of class 
Agenda. Class Agenda is itself defined by, say, a list 
of rule packs to evaluate sequentially, and an index 
to the current rule pack. This new class of evaluator 
will be reusable by all the rule bases requiring this 
kind of control (see e.g. [8]). 
 
The same scenario applies for any control strategy 
that requires additional structure, such as: 
managing a history or a trace of rule firing, selecting 
rules according to priority lists, and so forth. 
 
 
3.4. Dynamically constructed control objects 
 
In many applications, control information has to be 
somehow integrated in domain knowledge. A 
typical example is the so-called subgoaling technique 
presented e.g. by Brownston for the Monkey & 
Bananas problem [4]. Specific objects called goals are 
introduced and maintained together with the 
domain objects. They are organized in a tree-like 
hierarchy. Most of the rules have at least one 
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condition which deals with a goal, and many rules 
have conclusions that create or modify goals. 
 
In our architecture, the objects necessary for 
managing subgoaling are naturally represented by 
adequate subclasses of evaluators. In the Monkey & 
Bananas problem, a class EvaluatorSubGoaling 
will be defined, as a subclass of Evaluator, that 
adds the attributes necessary for managing 
father/son relationships between goals and their 
subgoals. 
 
3.5. Talking about a fireable rule : assertions 
 
However, the choice of the rule to be fired may 
require to know more about the fireable rule than 
simple syntactic information. The main thing to 
know about a rule is the consequence of its firing on 
the simulated world. But this information is not 
easily accessible, essentially because of the 
encapsulation principle. Indeed, as we saw in 
section 2.3, rule action parts are represented either 
as texts or compiled methods. Neither of these 
representations is suitable for manipulation by an 
inference engine. In other words, because attributes 
are hidden by the communication interface, the 
system does not know anything about what a rule 
does before it actually fires it. 
 
Our solution to this problem is to introduce a new 
syntactic construct that gives the programmer the 
ability to state the intention of a rule. This construct, 
called an assertion is basically a representation of a 
fact about the world (in the logical sense). It is 
expressed as a Smalltalk expression (between 
brackets {}) and is manipulated as an instantiated 
syntactic tree. Each NÉOPUS rule text has an 
additional field (the finalState field) that 
contains such an assertion. When a fireable rule is 
created, the assertion is instantiated with the objects 
that match the rule. 
 
For example, here is a rule taken from the M&B rule 
base. This rule states that if a monkey and a physical 
object verify a set of conditions, then the monkey 
takes the object (method take:). The finalState 
part of the rule declares that in this case, the 
monkey will hold it, by the assertion {s isHolding: o} 
: 
  

holdObjectNotCeiling 
  | Monkey s. PhysicalObject o |  
 o weight = #light. 
 o isNotOn: #ceiling. 
 s isOn: #floor. 
 s holdsNothing. 
 s isAt: o at. 
actions 
 s take: o. 
 o modified. s modified. 
finalState 
 {s isHolding: o} 

 
Those assertions may now be used for specifying 
more elaborate control strategies, involving 
dynamically created control objects. Since assertions 
are also boolean expressions, they may be used for 
representing the stopCondition of evaluators, 
instead of the former blocks (as seen in 3.3). 
 
 
4. Metarules 
 
We further propose to maintain these control objects 
by means of a separate set of rules, called control 
rules or metarules. These rules will deal only with 
control objects and with the conflict set. They 
constitute a separate rule base, called metabase, 
which completely specifies the control strategy. 
 
4.1. Substitution - regression 
 
We propose an architecture for managing control 
objects that is completely substituted to the standard 
procedural activation (the method 
proceduralEvaluate seen in 3.2). In this scheme, 
a metabase is associated to the current rule base to 
be activated. The activation of the rule base consists 
simply in activating (recursively) its metabase. The 
basic inference loop, choice of rules to be fired, and 
more generally the management of control objects 
will all be defined by rules of the metabase. More 
precisely, the firing of a metarule operates either a 
modification of the control model (universe of 
control objects) and/or the firing of a domain rule 
via the conflict set of the rule base being activated. 
 
For example, here is a metarule taken from the M&B 
problem, that generate sub goals. This metarule is 
defined in the metabase of the M&B rule base, and 
states that if there is a goal for the monkey to hold a 
physical object, and that certain conditions are satisfied, 
then a new goal to be on the floor should be created. 
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Goals are represented as assertions contained in the 
stopCondition attribute of evaluators. 
 
holdObjectNotCeilingOn 
 |EvaluatorSubGoaling e. Local s o |  
 
 e status = #loop. 
 e goalIsThat: {s isHolding: o}.  
 o weight = #light. 
 o isNotOn: #ceiling. 
 s isNotOn: #floor. 
 s isAt: o at. 
actions 
 |e2| 
 e2 <- e newSon. “evaluator created” 
 e2 stopCondition: {s isOn: #floor}. 
 e2 go 
 
Here is an other example of metarule that actually 
fires a rule from the rule base being activated. In the 
M&B problem, this is typically the case when there 
is a rule in the domain rule base whose 
finalState matches the stopCondition of an 
evaluator. 
 
 satisfyGoal 
|EvaluatorSubGoaling e. local cs rule| 
 e status = #loop. 
 cs = e conflictSet. 
 e satisfied not. 
 rule := cs ruleSatisfying: 
    e stopCondition. 
actions 
 cs fire: rule. 
 e status: #end. 
 cs modified. 
 e modified. e father modified 

 
Of course, this architecture raises a regression 
problem : how is the metabase itself activated ? This 
problem is simply solved by forbidding loops in the 
control tree : a rule base is either activated in a 
procedural manner or by the activation of its 
metabase. A metabase may not be activated by 
itself. 
 
It is important to note here that the activation of a 
rule base is totally separated from the activation of 
its metabase(s) from a Rete point of view. Each rule 
base has an associated Rete network which does not 
interfere with the metabase’s network. Rete 
networks propagations can be seen as series of un-
interrupted tides. A the end of each tide, the conflict 
set of the rule base is updated and the procedure 
that caused the tide is given back control. This 
procedure is either the procedural activation 

method (proceduralEvaluate) or the action part 
of a metarule (see e.g. metarule satisfyGoal). In 
this latter case, the rule firing will usually be 
followed by an other tide in the metabase’s network, 
caused by a modified declaration (such as 
conflictSet modified in metarule 
satisfyGoal). 
 
4.2. Hierarchies of control objects and metabases 
 
The NÉOPUS experience in writing metabases 
convinced us that metabases share a lot of common 
behavior. Because writing metarules is not a trivial 
task, this common behavior is worth factoring. This 
the main motivation in using rule base inheritance 
for writing metabases. Each metabase is defined as a 
sub-base of an existing metabase. A root metabase, 
called DefaultMeta defines a standard control 
behavior whose effect is similar to that of the 
proceduralEvaluate method.  
 
Control is therefore expressed as a double 
specification : structure is defined in the evaluator 
objects, and their management in the metabase. This 
double programming is effectively achieved by the 
support of class inheritance for evaluators, and rule 
base inheritance for metabases. Those two 
inheritance schemes are not necessarily parallel: 
evaluator classes may support various types of 
metabases.  
 
4.3. Taxonomies of metabases 
 
A taxonomy of metabases is built, starting from root 
base DefaultMeta. Metabases become more and 
more complex as the tree grows, and more and 
more application-dependent. A good example of the 
genericity of metabase can be found in [8], where 
the control of a real-time rule-based system is 
defined as a metabase with a five-level inheritance 
tree. The first three levels (starting from 
DefaultMeta) are general and application 
independent. They define a control strategy that 
fires rules in parallel, according to a dynamically 
constructed agenda. The last ones are application-
dependent, and contain high priority metarules. The 
system works in a real time closed loop and 
monitors patient in intensive care units. 
A yet more sophisticated example is an extension of 
NÉOPUS based on an novel architecture for 
explanation-based learning [18]. In this application, 
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evaluator objects are dynamically created to learn 
about the sequence of firings, and generate more 
efficient control metarules. 
 
 
5. Conclusion 
 
We have introduced the notion of control objects 
together with metarules. The specification of control 
in this architecture gives the rule base programmer 
all the power and capacities of abstraction of object-
oriented programming, to specify independent and 
reusable control knowledge. This is achieved by 
proposing two inheritance schemes that combine 
elegantly with each other, and a library of general 
and ready-to-use control metabases. Our approach 
is validated by the use of the system in various real 
world applications. 
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