An Object-Oriented Representation of Pitch-Classes, Intervals,
Scales and Chords:
The basic MusES

(revised and extended version)

Francois Pachet
LAFORIA, Internal Report 93/38, November 1993

E-mail : pachet@laforia.ibp.fr

Abstract

The MusES system is intended to provide an explicit representation of musical
knowledge involved in tonal music chord sequences analysis. We describe in this paper
the first layer of the system, which provides an operational representation of pitch
classes and their algebra, as well as standard calculus on scales, intervals and chords.
The proposed representation takes enharmonic spelling into account, i.e differentiates
between equivalent pitch-classes (e.g. C# and Db). This first layer is intended to
provide a solid foundation for musical symbolic knowledge-based systems. As such, it
provides an ontology to describe the basic units of harmony. This first layer of the
MusES system may also be used as a pedagogical example for those wishing to apply
object-oriented techniques to musical knowledge representation.

Résumé

Le systeme MusES a comme objectif de représenter les connaissances musicales
nécessaires a 'analyse harmonique de séquences d'accords en musique tonale. Nous
décrivons ici la premiere couche du systeme qui propose une représentation
opérationnelle des notes et de leur algebre, ainsi que des intervalles, gammes et
accords. Cette représentation a comme particularité de prendre en compte les
problemes d'enharmonie, i.e. de différencier les notes équivalentes comme Do# et Réb.
Cette premiére couche est utilisée pour I'étude de mécanismes d'analyse harmonique et
peut étre considérée comme une ontologie des concepts de base de 'harmonie. Le but
de ce document est aussi de proposer un exemple non trivial d'application de
Smalltalk-80 a l'usage des musiciens désirant se lancer dans la programmation par
objets.

An object-oriented representation of pitch-classes, intervals, scales and chords

QLN =

\O 00

TETOAUCHION . e e ettt e e e e e e e e e e e e e e eeenas 1

Algebra of pitch classescocooiiiiiiiiii 2
Notes as abstract data types..........cccooeiiiiiiiiiiiiii 3
3.1. From Abstract Data Types to Object-Oriented Programming......................... 4
3.2. The hierarchy of Notes...........c.cccooiiiiiiiiiiiii 4
3.3. Equivalence of pitches...........cccooiiiiiiiiiiii 6
3.4. Note creation and initialization............cccccocooiiiiiii 7
INtEIVALScveiiiiiiicc 8
4.1. Methods to access constant intervals.............c.cccooiiiiiiiiiiiiii 9
4.2. Computing interval extremities............ccocoiiiiiiiiiiiii 9
4.3. Computations on intervals...........ccocoiiiiiiiiii 11
4.4. Computing intervals from its extremities...........cccococoveiiiiiiiiniiiiiiiiin, 12
SCALES ... 12
5.1. Definition and creation of scalesc.ccccocooiiiiiiiiiii 13
CROTAS ..o 15
6.1. Definition and creation of chords............cccccociiiiiiii 15
6.2. A vocabulary for chord names.............cccooeiiiniiiiiiini 15
6.3. Deducing the structure from the list of notes............ccccooooviiiiin 17
6.4. Deducing the list of notes from the structure............ccccooovviiniiiiiiinn, 18
6.5. Extracting scale-tone chords..............ccooooii 19
6.6. Computing all possible chord names...............cccocoovviiiiiiiiiiiiii, 19
6.7. Computing possible analysis...........cccccooiiiiiiiiiiii 20
6.8. Genericity and Reusabilityccocooiiiiiiiiii 21
Extending the system ... 23
7.1. Representing actual octave-dependent notesc..ccecooveiiiiiiiiiininnnn, 23
7.2. Problems not Solved.............ccocoiiiiiiiii 24
7.3. Representing non trivial 1€asoningcccoeeiiviiiiiiiiiiiiiii 24
CONCIUSION ...ttt 24
REfOIENCES ...ttt 24

An object-oriented representation of pitch-classes, intervals, scales and chords

An Object-Oriented Representation of Pitch-Classes, Intervals,
Scales and Chords

Francois Pachet
LAFORIA
E-mail : pachet@laforia.ibp.frl

1. Introduction

Musical Analysis is an ideal field for testing knowledge representation techniques. It
involves complex knowledge which is well documented, and many examples are
available. Lots of research have been devoted to complex harmonic problems, such as
performing complete harmonic analyses of tonal pieces or extracting deep structures in
jazz chord sequences.

We focus here on a remarkably simple problem, which, to our knowledge, has yet never
been fully addressed. The problem is simply to provide a "good" representation of the
algebra of pitch classes, including the notion of "enharmonic spelling", which is so vital
to tonal harmony, and a representation of intervals, scales and chords to serve as a
foundation for implementing various types of harmonic analysis mechanisms. This
problem may be considered trivial compared with more complex problems such as
computing Shenkerian analysis of Debussy's pieces, but it has always been solved in
ad hoc ways (usually in Lisp), using idiosyncratic representation techniques. For
instance, [Winograd 93] emphasises the importance of taking enharmonic spelling into
account, but proposes an ad hoc representation of chords as (Lisp) dotted lists.
Similarily, [Steedman 84] proposes a solution for performing harmonic analysis of
chords sequences but, considers all the entities (chords, intervals or notes) as Prolog-
like constants and is interested only in higher level properties of sequences deduced
from the mere ordering of their elements.

Our goal here is not only to write a program that solves the problems mentioned
above, but also to explicitly represent the underlying mechanisms of pitch-class
calculus. This representation is claimed to be natural, and the mechanisms that
implement the operations on pitch classes are considered isomorphic to human
operations. Pushing this idea to its limit (which we occasionally find ourselves doing),
the system described here may be considered as a substitute for a first-year text-book
of introduction to the basics of harmony. Indeed, many of the mysteries of music
notation are explicitly solved here simply because the basic entities and mechanisms of
music notation are given an operational status.

We will first spend some time on defining precisely the algebra of alterations in pitch-
classes and interval computations (parts 2, 3, 4). These parts are important because
they are the foundation of all the system, but they are not the most thrilling. Parts 5
and 6 deal with computations on scales, chords, and scale-tone chords, and should be

1 The source code of the system presented here may be obtained on the web at: http:/ /www-
laforia.ibp.fr/~fdp/MusES.html.

An object-oriented representation of pitch-classes, intervals, scales and chords

much more exciting to the reader. Finally we show how the system can be easily
extended, e.g. to take into account exotic tonalities.

2. Algebra of pitch classes

We are interested in representing pitch classes, i.e. octave-independent notes and their
relations. For example, pitch class C refers to the set of all possible C's (C1, C2 and so
on, hence the name pitch-class). In order to avoid confusion - because the word class is
very polysemic - we will use the word note to refer to pitch classes. This convention is
also needed in our context, since we will be speaking of "classes" (in the sense of
object-oriented programming) of such notes, and want to avoid talking about pitch
class classes.

For example, note C will actually refer to pitch class C, i.e. the set of all Cs (modulo 12).
We will not consider actual notes, with actual pitch (such as Midi pitches in [1 .. 127])
in this presentation. The extension of our theory to represent actual notes - which may
be thought of as "instances" of pitch classes - will be discussed in conclusion, and is
rather straightforward once the theory of pitch classes is correctly set.

Here is a wish-list of what a good representation of notes (read pitch-class) should
take into account :

-A note has a unique name. There are conceptually 35 different notes : 7
naturals, 7 flats, 7 sharps, 7 double sharps and 7 double flats. The unicity of
notes is actually very important. There is only one occurrence of each note (in our
octave-independent context). Practically, this means that, for example, the minor
second of B (C) is physically the same note as the minor seventh of D, and so on.

- There is a non trivial algebra for notes. The notes are linked to each other half-
tone or tone wise, and form a circular list. But some notes are pitch-equivalent,
(e.g. A# and Bb , or C##, D and Ebb). Although the ability to differentiate
between equivalent notes may not seem important at this point, it becomes a
crucial point when doing harmonic computations. There is a subtle difference
between C# and Db which actually appears only when scales come into play : for
instance, the major scale built from C# contains no C, whereas the major scale
built from Db does contain a C. Stated differently, the names of notes contain
condensed harmonic information that are required by harmonic analysis
techniques. Our theory should be able to interpret this information.

- There is an non trivial algebra of alterations, which includes the following
equations :

#0b =b o# =identity.
For any x in (#, b, natural), x o natural = natural.

This algebra is non trivial because not everything is allowed, e.g. triple sharps.
- Notes are linked by the notion of interval, which, in a way, preserves this
algebra. For instance, the diminished fifth of C is not the same note as the

augmented fourth of C, but the two notes are equivalent.

- Certain intervals are forbidden for certain notes : for example, the diminished
seventh of Cb does not exist (it would be B bbb !).

An object-oriented representation of pitch-classes, intervals, scales and chords

- Certain scales do not exist, by virtue of the preceding remarks : G# major is
impossible (because it would contain a F## in its signature). The same holds for
Db harmonic minor, and so on.

Although it is certainly possible to write a global algorithm in any procedural language
(such as Pascal or Lisp) that takes all these cases into account, there is clearly here a
better solution. This solution is based in abstract data types, and consists in considering
all these 35 notes as a collection of instances of various types, each type having its own
structure and set of operations. This approach not only yields a simple implementation,
but also provides us with a clear understanding of the operations on pitch classes.

3. Notes as abstract data types

The main idea underlying our representation paradigm is to model the world as a
collection of abstract data types, i.e. we do not separate operations on one hand and
data structures on the other, but rather try to define types (or classes in object-
oriented programming) which gather structures and operations. The theory of algebraic
data types gives a formal framework to represent abstract data types and the formal
properties of relations. Abstract data types and object-oriented programming are
particularily well suited to represent musical knowledge (Cf. for instance
[Smaill&Wiggins 90] who use abstract data types to represent "constituents" useful for
analysis, or [Pope 91] who use Smalltalk for sound editing and real-time algorithmic
composition). As it turned out, the problem of representing notes and their algebra is a
prototypical example as it fits nicely in this formalism.

This approach leads to us to considering the notes as follows :

- All (35) notes are not equal. Some operations are permitted on some notes
and not on others. There are 5 different types of notes : NaturalNotes, SharpNotes,
FlatNotes, DoubleFlatNotes and DoubleSharpNotes. It is interesting to distinguish
different types of notes because its gives a precise definition to alterations : the #, v,
and natural, may then be seen as polymorphic functional operations on types.

For example, the # operation maps the Nat ur al Not es to Shar pNot es : A# is then
seen as the result of operation # to note A (instance of Nat ur al Not e), which yields
an instance of Shar pNot e, i.e. :

sharp : Nat ur al Not e ------- > Shar pNot e
sharp(x) is written x#.

This operation is polymorphic because there are actually several distinct sharp
operations, depending on the type of the argument. An other # operation maps
Shar pNot es to Doubl eShar pNot es (e.g. A## = sharp (A#)), and an other one
maps Fl| at Not es to Nat ur al Notes (Ab # = sharp (Ab) = A), and
Doubl eFl at Not es to Fl at Not es.

Some operations are common to all note types (e.g. the operation natural), other are
specific to one type of note (e.g. the operation followingPitch that links C to D, D to E
and so on, is valid only for natural notes) and other to a group of note types (e.g. the
sharp operation is valid for all note types except doubl eShar pNot es).

Similarily, the natural operation is simply identity when applied to NaturalNotes (A
natural = A), but is quite different when applied to SharpNotes (A # natural = A) and
still different when applied to double SharpNotes (A ## natural = A). This
polymorphism of the natural operation is naturally captured by abstract data types.

An object-oriented representation of pitch-classes, intervals, scales and chords

3.1. From Abstract Data Types to Object-Oriented Programming

Although the theory of abstract data types sheds a new light on the algebra of pitch-
class, it does not allow us to write a completely operational specification of the
mechanisms. We could write out all the axioms of the algebra of pitch-classes and
intervals but this is not what we will do now. We will consider a variant/descendant
of this formalism, namely object-oriented programming and Smalltalk-80. Object-
oriented programming is based on this very idea of defining abstract entities that
gather structure and operations in the context in programming languages.

The vocabulary here is a little bit different : Types are called classes. Classes define
structure in terms of instance variables (or slots, attributes). Each class also has a set of
methods, which are the operations understood by its instances. Polymorphism in object-
oriented languages is naturally present, since several classes may have different
methods having the same name. An important feature of object-oriented programming
is the inheritance mechanism between classes, that allows factoring common structure
and behavior.

In this document, methods will be written with the following format :

! aClassName methodsFor: aProtocol!
aMethodName and its arguments
the text of the method.

Where aPr ot ocol is simply a set of related methods for a particular class. The text
of the method is a set of expressions. Each expression is a message sent of the form:
obj ect messageSel ector argunments (Cf. [Goldberg&Robson 89] for further
details about Smalltalk).

We will describe the main methods of the system, but not all of them ! The reader
whishing to try the system out may obtain the Smalltalk source code by e-mail.

3.2. The hierarchy of notes

In order to represent notes according to these requirements, we define a hierarchy of
classes as follows. Each class has its set of instance variables and operations :

1. Not e represents the root of all classes representing note. It is an abstract class and
has no instance variables.

2. Nat ur al Not e represents natural notes. There are 7 instances of this class,
representing the 7 natural notes (A, B, C, D, E, F, G). Natural notes form the core of
the system :
-They have a name, (actually they have two names, to allow French terminology :
A =La, B = §j, etc...). The name is used for global access and printing.
- They are linked to each other according to the order (A, B, C, D, E, F, G). This
is represented by two instance variables : following and preceding, that point
respectively to the following and preceding natural note,
- Moreover, in order to represent the various intervals between notes, we assign
to each natural note an arbitrary semiToneCount, so that, e.g. semiToneCount(A)
=1, semiToneCount(B) = 3, .., semiToneCount(G) = 11. This semiToneCount is
used for interval computations (Cf. method al t er at e: t oReach).

An object-oriented representation of pitch-classes, intervals, scales and chords

- Finally, there are two pointers towards the sharp and flat notes generated by the
natural notes. They represent the function sharp (resp. flat), which maps
Nat ur al Not es -> Shar pNot es (resp. Fl at Not es). These notes are
instances of Shar pNot e (resp. Fl at Not e) (Cf. below).

The structure of class Nat ur al Not e is therefore :

Note subclass: #NaturalNote
instanceVariableNames: name nom semiToneCount following preceding sharp flat'

Class Nat ur al Not e defines methods to access following, preceding, sharp and flat
notes. These 4 methods are simple accessing methods : their result is the value of the
corresponding note. These values are assigned once, at initialization time (Cf.
initialization of notes). For instance, the method sharp is defined as :

'NaturalNote methodsFor: 'accessing'!
sharp
Asharp

3. Al t er edNot e is the root of the classes representing altered (and doubly altered)
notes. It is an abstract class. It defines only one instance variable called natural
pointing back to the natural note it comes from. For instance, A#, A##, Ab , and Abb
all have A as their natural.

4. Finally, there are 4 subclasses of Al t er edNot e for representing respectively sharp,
flat, doubleSharp and doubleFlat notes. These classes implement the methods sharp,
flat and double flat so as to respect the natural algebra of alterations. For instance,
class Fl at Not e implements the following shar p method :

'FlatNote methodsFor: 'accessing'!

sharp

"my sharp is simply my natural note"
natural

Conversely, for sharp notes, the flat operation is defined as the natural operation :

!SharpNote methodsFor: 'accessing'!

flat

"my flat is simply my natural note"
“natural

For Doubl eFl at , the shar p method will consist in delegating the message to the
natural note :

'DoubleFlatNote methodsFor: 'accessing'!
sharp
"xbb#=xDb"

Anatural flat

Method f | at in Doubl eShar pNot e is similar.

An object-oriented representation of pitch-classes, intervals, scales and chords

Finally, we need to represent the functional link between a flat (resp. sharp) note and
its corresponding doubleFlat (resp. doubleSharp). This is realized by defining an
instance variable in class Fl at Not e pointing to the corresponding doubleFlat note
(and idem for sharp).

Thus, the method flat is implemented as a simple access method for Fl at Not e (idem
for sharp in class Shar pNot e).

To conclude, here is the list of all the implementations of the flat method (the same
mechanism applies for the shar p operations) :

'NaturalNote methodsFor: 'alterations'! !FlatNote methodsFor: 'alterations'!
flat flat
Alat AMlat
'SharpNote methodsFor: 'alterations'! 'DoubleSharpNote methodsFor: 'alterations'!
flat flat
natural “natural sharp

Note that the flat operation is intentionaly not defined for class Doubl eFl at Not e.
The flat message sent to a Doubl eFl at Not e will raise an error, which is conform to
our philosophy. Idem for method sharp in class Doubl eShar pNot e.

3.3. Equivalence of pitches

Last, we introduce a method for testing the equivalence of pitches. This method, called
pi t chEqual s: tests the semiToneCount, and allows to represent the equivalence of
certain notes. This method is implemented as follows :

'Note methodsFor: 'testing'!
pitchEquals: aNote
Nself semiToneCount = aNote semiToneCount

To implement method semiToneCount, we will once again use polymorphism. The
method is defined as follows in the 5 classes :

'NaturalNote methodsFor: 'access'! 'FlatNote methodsFor: 'access'!
semiToneCount semiToneCount
"a simple acess method" "natural semiToneCount - 1
AsemiToneCount
'SharpNote methodsFor: 'access'! 'DoubleSharpNote methodsFor: 'access'!
semiToneCount semiToneCount
Anatural semiToneCount + 1 Anatural semiToneCount + 2

'DoubleFlatNote methodsFor: 'access'!
semiToneCount
Anatural semiToneCount - 2

An object-oriented representation of pitch-classes, intervals, scales and chords

Now all the note classes have been defined, and the algebra of pitch is correctly
represented. The note classes form the following inheritance tree (instance variables are
between parenthesis, and inheritance is represented by indentation) :

Object ()
Note ()

NaturalNote (name following preceding sharp flat semiToneCount)

AlteredNote (natural)
SharpNote (sharp)
FlatNote (flat)
DoubleFlatNote ()
DoubleSharpNote ()

Figure 1 represents the class hierarchy as well as the instances A, B, A#, A##, Ab, and
Abb, and their relationships.

Note

= instance of

* = subclass of

NaturalNote AlteredNote

(following

preceding

sharp ...)
A

SharpNote |[DblSharpNote FlatNote \
followihg i atural *sharp ﬁ flat DblFlatNote
sharp
B A Attt flat A
flat Ab | — i Abb

Figure 1. Relationships between several notes.

3.4. Note creation and initialization

Once these classes are defined, we define an initialization method as a class method
for Not e. This method will create the 35 instances of notes and link them according
the instance variables defined above. Here is an outline of the method (dot ... are used
to avoid repetition for all notes):

!Note class methodsFor: 'note initialization'!

initialize
| asbs .. af bb .. ass bss .. aff bff .. |
A := (NaturalNote new) semiToneCount: 1; name: #A.
B := (NaturalNote new) semiToneCount: 3; name: #B...
as := SharpNote new natural: A.

An object-oriented representation of pitch-classes, intervals, scales and chords

bs := SharpNote new natural: B...

af := FlatNote new natural: A.

bf := FlatNote new natural: B...

ass := DoubleSharpNote new natural: A.

bss := DoubleSharpNote new natural: B...

aff := DoubleFlatNote new natural: A.

bff := DoubleFlatNote new natural: B...

A following: B; preceding: G; sharp: as; flat: af...
as sharp: ass. bs sharp: bss...

Since notes are unique, we want to have a global access to them. This global access is
realized by 7 class variables (Ato G which point to the corresponding natural notes
created during the initialization phase. A set of special methods are written to access
these natural notes by messages such as A, B, C (or do, re, mi). Altered notes are then
accessed by sending appropriate alteration messages to natural notes.

Here is a micro session that illustrates note access?.

Note C > C

Note C sharp > C#

Note C sharp sharp flat > C#

Note C flat flat flat -> error: 'flat' not understood by class DoubleFlatNote
Note C sharp pitchEquals: Note D flat -> true

4. Intervals

Now that notes and the algebra of alterations are correctly defined, interval
computation is easy to add (and more interesting !). The same kind of requirements
that hold for notes hold for intervals, namely the possibility of differentiating
synonymous intervals. For instance, we want to be able to distinguish the diminished
fifth of C (which is Gb) from its augmented fourth (which is F#, a pitch-equivalent of
Gb).

There are a number of things one can do with intervals, which are :

- computing the top or bottom lacking extremity of an interval, given a note (e.g.
what is the major third of C, or what is the note whose major third is C),
- computing an interval given two notes. For example, we want to be able to
answer the question : what is the interval between C and F# ? (the answer here is
an augmented fourth),
- performing some computations on intervals themselves, such as :
adding intervals (e.g. a major third + a perfect fifth = a major seventh)
computing reverse intervals (the reverse of an augmented fourth is a
diminished fifth).

In order to do so, we must have an explicit representation of intervals, that supports
those operations. The class | nt er val is defined with the following structure :

2 Note that the instance of Shar pNot e that represents C# is accessed by sending the message
sharp to the note C, but prints itself as C#.

An object-oriented representation of pitch-classes, intervals, scales and chords

a type, which indicates how many notes should be enumerated. The type is
represented by an integer (e.g., 2 for a second, 3 for a third, and so forth),
a number of semiTones, that represents its actual width (also an integer).

These two informations are sufficient to actually compute the real name of the interval.
For instance, a major third interval is represented by an instance of Interval whose type
is 3 (for 'third'), and whose semiTones is 5. This is represented by the printing method
of class | nt er val , that prints an interval according to the human (mysterious)
terminology, that allows perfect fifths ou fourths, but major and minor thirds:

'Interval methodsFor: "printing'!

printOn: s
type = 2 ifTrue: [s nextPutAll: (#(diminished minor major augmented) at: (semiTones + 1))].
type = 3 ifTrue: [s nextPutAll: (#(minor major) at: (semiTones - 2))].
type = 4 ifTrue: [s nextPutAll: (#(diminished perfect augmented) at: (semiTones - 3))].
type = 5 ifTrue: [s nextPutAll: (#(diminished perfect augmented) at: (semiTones - 5))].
type = 6 ifTrue: [s nextPutAll: (#(minor major augmented) at: (semiTones - 7))].
type = 7 ifTrue: [s nextPutAll: (#(diminished minor major) at: (semiTones - 8))].
s nextPutAll: ' ', (#(octave second third fourth fifth sixth seventh) at: type).

4.1. Methods to access constant intervals

To ease access to commonly used intervals, we define a set of methods that instantiate
class I nt er val accordingly.

Here are some of these methods that speak for themselves :

Interval class methodsFor: 'constants'! Interval class methodsFor: 'constants'!
fifth diminishedSeventh
Aself type: 5 semiTones: 7 Aself type: 7 semiTones: 9

4.2. Computing interval extremities

In order to compute the note forming a given interval with a given note, we will follow
the human algorithm which says that computing an interval consists in the following
steps : (we will take the example of computing the diminished fifth of Cb) :

1. getting to the natural note. In our example, Cb yields C.

2. enumerating as many steps as the interval says. Here, a diminished fifth is a
tifth, so we will enumerate five notes, starting from C: C, D, E, F, G. We get a G.

3. Adding one or two # or b to the resulting note (here G) to yield the right
number of half-tones. In our example, we want a diminished fifth, which is 6
half-tones. From Cb to G there are 8 half tones, so we send the message flat flat to
the result, eventually getting Gbb.

Here is the corresponding method, which computes the diminished fifth of a note. It is
defined in the root class of notes (Not e).

An object-oriented representation of pitch-classes, intervals, scales and chords

'Note methodsFor: 'intervals'!
diminishedFifth
Alnterval diminishedFifth toplfBottomls: self

The main method is t opl f Bott om s: , which is defined in class | nt er val as
follows :

'Interval methodsFor: 'computing'!
topIfBottomlIs: aNote
"yields the note making the interval self with aNote"
NaNote alterate: (aNote nthFollowing: type - 1) toReach: semiTones

This method of class | nt er val uses two methods defined in class Not e :
nt hFol | owi ng: and al t erat e: t oReach: .
Method nt hFol | owi ng: simply yields the nth following note, in the natural ordering

'Note methodsFor: 'intervals'!
nthFollowing: i
| result |
result := self natural.
i timesRepeat: [result := result following].
Aresult

Now the main method is actually the method al t er at e: t oReach: , which takes
two arguments : a naturalNote 7, and a number of semiTones s. The method sends the
right number of sharp or flat messages to the natural note to reach an interval with s
semiTones.

It is important here to note that this method may be sent to any type of note. The
action to perform depends on the type of the note so we actually define 5 such
methods.

The first one deals with natural notes. The computation is based on the difference
between semiToneCounts of its extremities. Depending on this difference, the messages
sharp and flat are sent to the note passed in parameter.

'NaturalNote methodsFor: 'intervals'!
alterate: note toReach: s
| delta |
delta := (self semiTonesWithNaturalNote: note) - s.
delta = 0 ifTrue: [*note].
delta = 1 ifTrue: [*note flat].
delta = -1 ifTrue: [*note sharp].
delta = 2 ifTrue: [*note flat flat].
delta = -2 ifTrue: [*note sharp sharp].
Aself error: 'illegal interval'

The method sem TonesW t hNat ur al Not e: is defined simply as a difference of
semiToneCounts mod 12 :

'NaturalNote methodsFor: 'intervals'!

semiTonesWithNaturalNote: aNote
NaNote semiToneCount - semiToneCount \\ 12

An object-oriented representation of pitch-classes, intervals, scales and chords 10

Now what happens to non natural notes ? The answer is simple. For Shar pNot es
for instance, the computation consists in delegating the result to the corresponding
natural note, and then sending a sharp message to the result, as follows :

!SharpNote methodsFor: 'intervals'!
alterate: note toReach: s
N(natural alterate: note toReach: s) sharp

Similarily, the same mechanism holds for Flat, DoubleFlat and DoubleSharp notes.

The dual problem, i.e. finding the "bottom" of an interval, given its top, is now easily
defined as follows, by using the "reverse" of an interval :

'Interval methodsFor: ‘computing'!

bottomIfTopls: aNote
"yields the note from which aNote yields interval self"
Aself reverse toplfBottomls: aNote!

4.3. Computations on intervals

The reverse of an interval is trivially defined by computing the complement to 9 for
type, and to 12 for semiTones :

'Interval methodsFor: 'reverse'!
reverse
Aself class type: (9 - type) semiTones: (12 - semiTones)

Adding intervals is as easy to do, by simulating an actual computation starting for
instance in C. Note that this adding operation is not well defined, because all the
combinations do not yield valid intervals. For instance a minor second + a minor
second would yield a theoretic diminished third, which does not exist. Our + method
does not perform any test at this point, and in these illegal cases will yield an interval
that cannot print itself ! (this method is just here for fun) :

Interval methodsFor: 'arithmetics'!

+ anInterval
| notel note2 |
notel := self toplfBottomlIs: Note C.
note2 := anlnterval topIfBottomls: notel.
“Note C intervalWith: note2

Here is a micro-session that exemplifies interval computations :

Note C flatFifth -> Gb

Note C augmentedFourth -> F#

Note C majorThird majorThird -> G#

Note C flat minorSeventh -> Bbb

Note C flat diminishedSeventh -> error: illegal interval

Interval diminishedFifth bottomlIfTopls: (Note F sharp) ->C
Interval diminishedFifth bottomlIfTopls: (Note G flat) -> Dbb

An object-oriented representation of pitch-classes, intervals, scales and chords 11

Interval majorThird reverse -> minor sixth
Interval perfectFifth + Interval majorSecond -> majorSixth

(Note C diminishedFifth) pitchEquals: (Note F minorSecond) -> true

4.4. Computing intervals from its extremities

Finally, computing an interval from two notes is simple, and implemented by only one
method in class Not e :

Note methodsFor: 'intervals'!
interval With: aNote
| bb2 type |
type := 1.
b := self natural.
b2 := aNote natural.
[b2 = b] whileFalse:
[b :=Db following.
type := type + 1].
Alnterval type: type semiTones: (self numberOfSemiTonesWith: aNote)

The method nunmber Of Sem TonesW t h: is implemented as follows in class Not e,
by cutting the job in three pieces :

'Note methodsFor: 'intervals'!

numberOfSemiTonesWith: aNote
Nself semiTonesWithNatural +
(self natural semiTonesWithNaturalNote: aNote natural) -
aNote semiTonesWithNatural

The methods sem TonesW t hNat ur al and sem TonesW t hNat ur al : are
implemented respectively in each subclass to yield the correct result, once again using
polymorphism.

This method may be used as follows :

Note C intervalWith: Note F sharp -> augmented fourth
Note C sharp intervalWith: Note G -> diminished fifth
(Note C intervalWith: Note G) =
(Note D sharp intervalWith: Note A sharp) -> true

5. Scales

Let us now proceed with much more exciting matter : scales and chords. We will
consider only 7-note scales here. The theory of modern music implicitly distinguishes
between synthetic scales form so-called modes. Modes are scales that can be derived by
transpositing a synthetic scale. For example, the major (synthetic) scale (C D EF G A
B) may generate 7 different modes (referred to by greek names such as dorian,
myxolidian, aeolian etc), by starting the major scale from all 7 possible notes. We do

An object-oriented representation of pitch-classes, intervals, scales and chords 12

not know of any publicized effort to describe exhaustively all possible diatonic 7-note
synthetic scales. [Slonimsky 47] is a attempt to classify scales and melodic patterns
according to various divisions of an octave, upon which ornementation designs are
built by interpolation, infrapolations and ultrapolations. Although his thesaurus
contains around 1500 scales and patterns, his treatment of 7-note scales is not quite
convincing. Only 54 scales are given (under the form of "heptatonic arpeggios"), and
not all of them are synthetic modes?.

Slonimsky mentions an attempt by composer Busoni to find new exotic scales (in
Entwurf einer neuen Aesthetik). Busoni would have found 113 7-note scales, but no
consideration on exhaustivity is made.

An exhaustive account of 7-note scales should not be too hard however. The number
of scales starting from C, and containing all 7 notes (and excluding double sharps and
double flats) is easy to compute: each note may be either natural, sharp or flat, which

yields a total of 30 = 729 scales. Each of this scale may then be transposed in any of
the 12 tones. Some of them are not very interesting because they include enharmonic
duplicates (e.g. scales starting by C D# Eb ...). Deciding which ones should be
considered synthetic and which ones should be considered as modes is less trivial. We
did not address this problem yet.

We will address here the problem of representing the notion of a scale, building up
from our previous notions of Note and Interval. Strangely, these are extremely simple
to represent, once the foundation is set (and solid!). Here are some of the things we
will want to do with scales, in the context of harmonic amalysis :

- Find all the scales that contain n given notes,

- Find the signature of scales (number of sharps and flats),
- Compute the notes of a given scale,

- Represent the fact that certain scales are "forbidden",

- Extract scale-tone chords from a scale.

5.1. Definition and creation of scales

We actually have all we need to represent scales : a scale is an ordered list of intervals,
starting on a given root note. The class Scal e is defined with the following instance
variables :

a root that points to the root note,
a list of notes of the scale*. This list of notes may be deduced from the root and
type as we will see.

3 It is surprinsing to see Slonimsky often referred to as an exhaustive compiler of musical
material. Not only his thesaurus is not exhaustive (as Slonimsky himself jokingly remarks at
then end of his introduction), but his method for classifying melodic patterns is laborious and
never justified. Even Schoenberg, in a rather unconvinced liner note seems to have been
cheated: "I looked through your book and was very interested to find that you have in all
probability organized every possible succession of notes. This is an admirable feat of mental
gymnastics. But as a composer, I must believe in inspiration rather than in mechanics". It
seems that Slonimsky acquired a reputation of music radicalism mainly because his works
were hardly ever read (See also his redoubtable 1600-page "Music Since 1900").

4 At this point, we do not consider the problem of finding the scale corresponding to a set of
notes, as this is handled by successive layers of the system.

An object-oriented representation of pitch-classes, intervals, scales and chords 13

Now there are, as we saw, different types of scale : major scales, harmonic minor
scales, melodic minor scales and a vast amount of synthetic scales®. The type of the
scale could be represented by yet an other instance variable. But there is a better
solution that allows us to benefit, once more, from the advantages of polymorphism.
This solution consists in representing types of scales by different classes. Each class is
defined as a subclass of an abstract class Scal e, and implements the actual
definitions (here, the series of intervals) of the corresponding type of scale. in this
scheme, instances of these classes represent actual scales, whose type is determined by
their class.

Here is how it works. The main creation method is defined as follows, with one
argument : the root of the scale. This creation method is also in charge of computing
the list of notes and testing the validity of the scale.

!Scale class methodsFor: 'creation'!
root: aNote
sl
s := self new root: aNote; computeNotes.
s isValid ifFalse: ["self error: 'invalid scale'].
s

Now the 2 important methods are conput eNot es and i sVal i d, and are defined
as follows :

'Scale methodsFor: 'computing notes'!

computeNotes

"intervalList depends on the type of the scale. It is defined in each subclass of Scale"
notes := self class intervalList collect: [:s | root perform: s]16

The actual interval list is defined in each particular subclass of Scal e. This is the only
method needed to define a subclass of Scale. Since this information does not depend
on the actual instance of scale which performs the computation, we represent it by a
class method. For instance, here are the definition of Maj or, Har noni cM nor and
Mel odi cMi nor scales by their intervalList definition in the corresponding
metaclasses:

'MajorScale class methodsFor: 'interval list'!
intervalList
A(yourself second majorThird fourth fifth majorSixth majorSeventh)

'HarmonicMinorScale class methodsFor: 'interval list'!
intervalList
A(yourself second minorThird fourth fifth minorSixth majorSeventh)

'MelodicMinorScale class methodsFor: 'interval list'!
intervalList
A(yourself second minorThird fourth fifth majorSixth majorSeventh)

5 These 3 types of scales are sufficient to describe most of standard be-bop Jazz music.
6 Note the "smart" use of per f or m to compute the intervals using the interval computation
methods.

An object-oriented representation of pitch-classes, intervals, scales and chords 14

The validation test consists in checking the absence of any double altered note :

!Scale methodsFor: 'testing'!
isValid
A(notes detect: [:n | (n isKindOf: DoubleSharpNote) or: [n isKindOf: DoubleFlatNote]]
ifNone: [nil]) isNil

The creation of scales is defined as follows in class Not e by sending the a creation
message to the corresponding Scale class with self as the root parameter :

'Note methodsFor: 'scales'!
majorScale

AMajorScale root: self

Here is a micro-session for scales :

Note A flat majorScale -> Ab major
Note A flat majorScale notes -> (AbBb CDb Eb FG)

Note C harmonicMinorScale notes ->(C D Eb F G Ab B)

1

Note G sharp majorScale -> error: 'invalid scale

6. Chords

6.1. Definition and creation of chords

Let us proceed with the core of harmonic analysis : chords. We propose here a
representation of chords that is based on the representation of notes, intervals and
scales defined above, which allows to make various computations such as :

- finding the name of a chord given a set of notes and a root,

- finding all the possible chord interpretations of a set of notes,

- finding the set of notes corresponding to a chord name,

- finding all the possible harmonic analysis of a chord, in various scale classes.

Chords are represented by a class with two main instance variables : a r oot , which is
a note, and a struct ur e, which is a list of symbols. Chords may be created by
sending a message to the root, with the structure as argument, or by sending a message
to class Chor d with the complete string as argument, such as :

Note C sharp chordFromString: 'min' -> [C# min]
Note D chordFromString: " -> [D]
Chord newFromString: 'A min 7 9' ->[Amin79]

6.2. A vocabulary for chord names

An object-oriented representation of pitch-classes, intervals, scales and chords 15

Chord name vocabularies abound. None of them is complete, as each one is devoted to
a particular style of music. Classical music chord names are very precise concerning
the relative organization of notes within the chord (inversions), while Jazz-oriented
chord names insist on short-cuts for complex chord superstructures (the famous "+"
symbol which means something like "add whatever altered interval pleases you. The
more the better"). We introduce a grammar for chords that is able to take into account
all possible chords, including the most exotic ones. The syntax rules for the chord

name are the following:

1. By default, the root, major third and perfect fifth are included, unless otherwise
stated (UOS). For instance [A] is A major = (A C# E).

2. min
means a minor third. E.g. [A min] = (A CE).

3. noRoot
means a chord without root, whatever the rest of the structure may be. For example,
[C noRoot] has notes (E G), and [C min noRoot] has notes (Eb G).

4. no3
means a chord without third. For example [C no3] is (C G).

5. no5

means a chord without fifth. E.g [C 7 no5] = (C E Bb).

6. no7

means a chord without seventh. E.g. [C 9 no7] = (CE G D).
7. no9

means a chord without without ninth.

8. noll

means a chord without eleventh.

9. nol3

means a chord without thirteenth.

10. diminishedFifth
means a chord with diminishedFifth, and no perfect fifth.
11. augmentedFifth
means a chord with augmentedFifth, and no perfect fifth.

12. minorSeventh

means a chord with minorSeventh.

13. majorSeventh

means a chord with majorSeventh.

14. diminishedSeventh

means a chord with diminishedSeventh.

15. suspendedFourth
means a chord with a fourth and no third.

16. diminishedNinth

means a chord with diminishedNinth and minorSeventh.

17. ninth

means a chord with ninth, and minorSeventh, (UOS).

18. augmentedNinth

means a chord with augmentedNinth and minorSeventh (UOS)

An object-oriented representation of pitch-classes, intervals, scales and chords 16

19. diminishedEleventh

means a chord with diminishedEleventh, ninth and seventh (UOS)
20. eleventh

means a chord with eleventh, ninth and seventh (UOS)

21. augmentedEleventh

means a chord with augmentedEleventh ninth and seventh (UOS)

22. diminished Thirteenth

means a chord with diminishedThirteenth, eleventh, ninth and seventh (UOS)
23. thirteenth

means a chord with thirteenth, eleventh, ninth and seventh (UOS)

24. augmentedThirteenth

means a chord with augmentedThirteenth, eleventh ninth and seventh (UOS)

25. diminished

means a chord with root, minorThird, diminishedFifth and diminishedSeventh
26. halfDiminished

means a chord with root, minorThird, diminishedFifth and minorSeventh

This vocabulary may represent any combination of notes in a unique way. It does not,
however, take note orders into account. No verification is made on the compatibility of
the various structure components. For example [A augmentedFifth no5] has no precise
meaning. See next sections for examples.

6.3. Deducing the structure from the list of notes

Deducing the structure of a chord from the list of its notes is a purely procedural process. It
is represented by a big (and not very elegant) method, that represents a finite automata,
testing each possible case. Here is an outline of the method:

!Chord methodsFor: 'creation'!
fromNotes: 1
"assumes the first note is the root"
Aself fromNotes: 1 root: 1 first

fromNotes: aList root: r
[11
root :=r.
1 := aList asOrderedCollection.
notes := 1 copy.
structure := OrderedCollection new.

(lincludes: r) ifTrue: [1 remove: r] ifFalse: [structure add: #noRoot].

(self notes: 1 contains: #(majorThird minorThird fourth)) ifFalse: [structure add: #no3].

(((self notes: 1 contains: #(majorThird minorThird)) not) and: [l includes: r fourth])
ifTrue: [structure add: #sus4. 1 remove: r fourth].

(I includes: root majorThird) ifTrue: [1 remove: root majorThird].

(lincludes: root minorThird) ifTrue: [structure add: #min. | remove: root minorThird].

An object-oriented representation of pitch-classes, intervals, scales and chords 17

6.4. Deducing the list of notes from the structure

The reverse problem consists in finding the list of notes given a particular structure.
The computation is performed automatically in a lazy mode, when the notes access
message is sent for the first time to a chord:

!Chord methodsFor: 'notes access'!

notes
notes isNil ifTrue: [self computeAllnotes].
notes

For example, the notes of a chord may be computed as :

[(Chord newFromString: 'C min dim5 aug9') notes ~ -> (CEbGbBbD#) |

The conput eAl | not es method is implemented as follows:, by successively invoking
specialized methods to compute each part of the chord (computeRoot, computeThird,
computeSeventh and so forth).

!Chord methodsFor: notes computation'!

computeAllNotes

"computes the list of notes from the structure. The job is the opposite of method
fromListOfNotes. Assumes root is not nil."

notes := OrderedCollection new.
self computeRoot; computeThird; computeFifth; computeSixth; computeSeventh;
computeNinth; computeEleventh; computeThirteenth; computeDiminished

As an example, here are two of the specialized note computation methods:

computeThird
(structure includes: #n03) ifTrue: [*nil].
(structure includes: #sus4) ifTrue: [*notes add: root fourth].
(structure includes: #min) ifTrue: [*notes add: root minorThird].
notes add: root majorThird

computeSeventh
(structure includes: #n07) ifTrue: [*nil].
(structure includes: 7) ifTrue: [*notes add: root minorSeventh].
(structure includes: #maj7) ifTrue: [*notes add: root majorSeventh].
(structure includes: #dim?7) ifTrue: [*notes add: root diminishedSeventh].

(self structureHasEitherOf: #(9 dim9 aug9 11 augll 13 dim13))
ifTrue: [notes add: root minorSeventh]

Here are some examples of chord name computations using both mechanisms:

(Chord new fromString: 'Re maj7’) notes OrderedCollection (D F# A C#)
(Chord new fromString: 'Re# maj7') notes OrderedCollection (D# F## A# C##)
(Chord new fromString: 'C') notes OrderedCollection (CE G)

(Chord new fromString: 'D min 7 dim5') notes OrderedCollection (D F Ab C)

An object-oriented representation of pitch-classes, intervals, scales and chords 18

(Chord new fromString: 'C aug9') notes
(Chord new fromString: 'C aug9 dim5') notes
(Chord new fromString: 'C 13') notes

(Chord new fromString: 'C 13 aug9') notes
(Chord new fromString: 'C 13 aug9 no7') notes
(Chord new fromString: 'C halfDim') notes

OrderedCollection (C E G Bb D#)
OrderedCollection (C E Gb Bb D#)
OrderedCollection (CEGBbDF A)
OrderedCollection (CEGBb D#F A)
OrderedCollection (CEGRe#F A)
OrderedCollection (C Eb Gb Bb)

Chord newFromNoteNames: 'C E G' [C]

Chord new FromNoteNames: 'C E G#' [C aug5]

Chord newFromNoteNames: 'C FG' [Csus4]

Chord newFromNoteNames: 'C EG A' [C sixth]

Chord newFromNoteNames: 'CE A’ [C no5 sixth]
Chord newFromNoteNames: 'C A’ [C no3 nob sixth]
Chord newFromNoteNames: 'C E G# B' [C augb maj7]
Chord newFromNoteNames: 'C E Gb Bb' [C dim5 7]

Chord newFromNoteNames: 'C Eb Gb Bb' [C halfDim]
Chord newFromNoteNames: 'C Eb Gb Bbb' [C dim]

Chord newFromNoteNames: 'C Eb' [C min nob5]
Chord newFromNoteNames: 'C E F F#' [C no5no9 no7 11 augll]
Chord newFromNoteNames: 'C Gb G#' [C no3 dim5 aug5]
"A nice chord from A. Holdsworth"

Chord newFromNoteNames: 'D# F## A C##)' [D# dim5 maj7]

6.5. Extracting scale-tone chords

An extremely important and interesting feature of scales is their ability to generate the
so-called scale-tone chords. In a way, the whole mechanics of harmonic analysis is based
on this principle (in the other way round, Cf. below).
Generating chords from a scale is an operation that takes two arguments: a number of

polyphony p, and an interval i. The generation of chords consists simply in building (7)

sets of notes. Each set of notes (a chord) is built by taking successively each note of
the scale, and iteratively (p times) getting its i th following note. The classical case is
when i = 3, so that chords are built by successive thirds. The method that implements
this latter case is gener at eChor dsPol y: , which only needs the polyphony

parameter.

Here is a micro-session that generates chords :

Note C majorScale generateChordsPoly: 7

OrderedCollection ([C maj7 9 11 13] [D min 7 9 11 13] [E min 7 dim9 11 13] [F maj7
9 augl113] [G 79 11 1] [A min 79 11 dim13] [B min dim5 11 dim13])

Note D harmonicMinorScale generateChordPoly: 3 ->
OrderedCollection ([D min] [E min flat5] [F aug5, G min] [A] [Bb] [C# min flat5])

6.6. Computing all possible chord names

An object-oriented representation of pitch-classes, intervals, scales and chords

19

An interesting problem to solve is the problem of deducing a chord name from a list of
notes, without knowing its root. Actually there are two sub-problems: one in which the
root is one of the notes in the list, one - more difficult - in which the root is unknown,
and may be absent from the list. These two problems are trivial to solve once the chord
vocabulary and the two main creation methods are written.

The first problem is solved by method allChordsFromListOfNotes:, which is written as
follows:

Chord methodsFor: 'examples'
allChordsFromlistOfNotes: aList
Malist collect: [:x | self new fromNotes: alist root: n]

The second one is trivially represented by method really AllChordsFromlistOfNotes: as
follows, where allPlausibleRootNotes yields the list of natural, sharps and flat notes:

Chord methodsFor: 'examples'
reallyAllChordsFromlistOfNotes: aList
ANote allPlausibleRootNotes collect: [:x | self new fromNotes: alist root: n]

These methods are illustrated by the following session, where we compute all possible
chord interpretations of the set of notes (C E G):

Chord allChordsFromlistOfNoteNames: 'C E G'
orderedCollection ([C] [E min no5 no7 no9 nol1 dim13] [G sus4 nob 6]

Chord really AllChordsFromlistOfNotesNames: 'C E G'

OrderedCollection ([A noRoot min 7] [B noRoot sus4 no5 no7 dim9 dim13] [C] [D
noRoot sus4 no5 7 9 | [E min no5 nol1 no9 no7 dim13] [F noRoot no3 maj7 9] [G sus4
nob sixth] [A# noRoot no3 dim5 | [C# noRoot min dim5] [D# noRoot no3 no5 dim9

] [F#noRoot no3 dim5 7 dim9 | [G# noRoot no3 no5 nol1 no9 no7 dim13] [Ab noRoot
augb maj7] [Bb noRoot no3 no5 no7 9 augll sixth | [Db noRoot no3 nob5 maj7 aug9
augl1] [Eb noRoot nob5 sixth] [Gb noRoot no3 no5 no9 no7 augll |)

6.7. Computing possible analysis

Now that we know how to generate scale-tone chords from a given scale, we are, of
course, also interested in the reverse operation, which is the at the heart of harmonic
analysis : knowing, for a given chord, what analysis it can "support", i.e. what are the
scales from which is may be generated, and, for each of these possible scale, what is
the degree of the chord.

Let us first represent explicitly the notion of Har noni cAnal ysi s, with a trivial
representation by two instance variables :

Object subclass: HarmonicAnalysis
instanceVariableNames: 'scale degree'

Har moni cAnal ysi s defines a printing method to print itself between brackets {},
and with roman literals :

An object-oriented representation of pitch-classes, intervals, scales and chords 20

'HarmonicAnalysis methodsFor: 'printing'!
printOn: aStream
aStream nextPutAll: '{, self romanDegree,' 'of ',scale printString,'}'

Now the method that computes all possible analysis for a given chord is naturally
defined in class Chor d by adding all the possible analysis in a given scale (i.e. a
subclass of Scale), for all possible scales :

!Chord methodsFor: 'computing tonalities'!
possibleTonalites
"In all possible tonalities = all subclasses of Scale"
| result|
result := OrderedCollection new.
Scale allSubclasses do:
[:aScaleClass | result addAll: self possibleTonalitiesInScaleClass: aScaleClass].
Aresult

possibleTonalitesInScaleClass: aScaleClass

| ana scale chords possibleTonalities |

self format.

possibleTonalities := OrderedCollection new.

scale := aScaleClass root: Note C.

chords := scale generateChordsPoly: notes size.

chords do: [:c | (c matchWith: self) ifTrue:
[ana := Analysis new degree: (scale degreeOfChord: c).
ana scale: (aScaleClass root:

(self root transposeOf: (aScaleClass root intervalWith: scale root))).

possibleTonalities add: ana]].

ApossibleTonalities

Here is the corresponding micro-session :

(Chord new fromString: 'C maj') possibleTonalities ->
OrderedCollection (
{IV of G MelodicMinor} {V of F MelodicMinor}

{I of C Major} {IV of G Major}
{V of F Major} {V of F HarmonicMinor}
{VI of E HarmonicMinor})

(Chord new fromString: 'D min 7 dim5') possibleTonalities ->
OrderedCollection (

{IV of F MelodicMinor} {VII of Eb MelodicMinor}

{VII of Eb Major} {Il of C HarmonicMinor})

6.8. Genericity and Reusability
One of the main advantages of our approach, besides the clarification it brings to the

overall algebra of alterations, intervals and scales, is the fact that all the mechanisms
may be extended very easily, mainly by subclassing.

An object-oriented representation of pitch-classes, intervals, scales and chords 21

For instance, our representation of scales makes it straightforward to add new types
of scales, using inheritance. Introducing a new type of scale consists simply in creating
a new subclass of Scal e, and defining its interval list. The new class is then ready to
use.

For instance, let us define the Hungar i anM nor scale as follows :
Scale subclass: HungarianMinor

'HungarianMinor methodsFor: 'interval list'!
intervalList
"example : (C D Eb F G Ab B)"
(yourself second minorThird augmentedFourth fifth minorSixth majorSeventh)

We can right away use all the preceding methods without any modification. For
instance, we can compute the new (exotic) set of possible chords generated by this
scale as :

(HungarianMinor root: Note C) generateChordPoly: 4 ->
OrderedCollection ([C min maj7] [D dimb5 7] [Eb augb maj7] [F dim5 dim7] [G maj7]
[Ab maj7] [B min dim7])

Of course, we will be also able to use this scale for performing exotic analysis, in the
successive layers, at a minimal cost !

Here are for example, the possible analysis of a chord, in this new tonality :

(Chord new fromString: 'C maj') possibleTonalities ->
OrderedCollection (

{V of F HungarianMinor} {VI of E HungarianMinor}
{IV of G MelodicMinor} {V of F MelodicMinor}

{I of C Major} {IV of G Major}

{V of F Major} {V of F HarmonicMinor}

{

VI of E HarmonicMinor})

(Chord new fromString: 'D min') possibleTonalitiesIn: HungarianMinor ->
OrderedCollection ({I of D HungarianMinor } {VII of Eb HungarianMinor })

As John McLaughlin (one of the inventor of Jazz-rock, who, among other things,
introduced sophisticated and hard-to-analyse harmonic progressions in Jazz) writes in
the foreword of [Mahavishnu 76] : “... Not all of the following synthetic modes and their
derivatives have been used in this book. However I have included them for the benefit of the
serious music student, because one can find so much hidden within them, particularily in the
extraction of their scale-tone chords”.

Well, the extraction and study of these exotic scale-tone chords and their interactions
is now a child's play :

'NeapolitanMinor methodsFor: 'interval list'!
intervalList
"example : (C Db Eb F G Ab B)"
(yourself minorSecond minorThird perfectFourth fifth minorSixth majorSeventh)

An object-oriented representation of pitch-classes, intervals, scales and chords 22

'NeapolitanMajor methodsFor: 'interval list'!
intervalList
"example : (C Db Eb F G A B)"
A(yourself minorSecond minorThird perfectFourth fifth majorSixth majorSeventh)

'DoubleHarmonic methodsFor: 'interval list'"!
intervalList
"example : (C Db E F G Ab B)"
"(yourself minorSecond majorThird fourth fifth minorSixth majorSeventh)

'MajorLocrian methodsFor: 'interval list"!
intervalList
"example : (C D E F Gb Ab Bb)"
A#(yourself second majorThird fourth diminishedFifth minorSixth minorSeventh)

... and so on : McLaughlin gives 16 synthetic modes, which can be all represented
similarily. We can now have the full possible analysis for any chord in any scale, and
study them by appropriate queries to MusES.

7. Extending the system

7.1. Representing actual octave-dependent notes

As we said in the beginning, our theory only takes pitch-classes into account, and does
not differentiate several notes belonging to the same pitch class (octave-dependent
notes). The first idea that comes to mind to include these actual octave-dependent
notes in our system is to have our present notes (instances of the various subclasses of
Not e) become classes, in the sense of OOP, so that one can make instances out of them !
For instance, we would like to say that note C3 is an instance of pitch-class C. And of
course pitch-class C would still be an instance of class Nat ur al Not e !

This procedure, which consists in raising all the classes and instances one step higher
in the instanciation tree is technically possible’, but raises an ontological problem :
What do we want to consider global vs volatile ?

Intuitively, we would like to say that pitch-classes are global objects, but that octave-
dependent notes are not. There are two arguments to support this claim : (1) Pitch
classes are not too many (35), compared to actual octave-dependent notes (35 * say, 8
octaves = 280 notes !), and (2) there is no reason to decide a priori what are the limits
in the octave multiplication : 8 seems a good approximation, but then we will have the
problem of deciding what happens to the upper or lower bounds (would we authorize
interval computations on these bounds for instance ?). This lead us to consider a
representation for octave-dependent notes as instances, and pitch-classes as classes.
Because of space limitation, we will not discuss these technical details here.

Insérer ici la description des OctaveDependentNotes, et les modifications a apporter
pour les calculs d'intervalles.

7 But it is not trivial, since metaclasses are not really first-class objects in Smalltalk.
However, small extensions to Smalltalk allow the user to have complete control on
metaclasses (Cf. the ClassTalk system by [Cointe&Briot 89]).

An object-oriented representation of pitch-classes, intervals, scales and chords 23

7.2. Problems not solved

There are a couple of classical problems involving pitch class computation we did not
deal with, such as : computing the scale from a list of notes, or : given an incomplete
list of notes (of length < 7), compute the list of plausible scales. We hope that our
presentation convinced the reader that these extension are trivial to add to the existing
system.

7.3. Representing non trivial reasoning

The system presented here achieves its goal, which is to represent the basic harmonic
entities necessary to perform sophisticated reasoning. The representation of this
reasoning is the main goal of the higher levels of the MusES system, and is described in
subsequent documents. The central idea of these extensions is to use a specialized
forward-chaining, first-order inference mechanism (NéOpus) with which all the
reasonings involving the objects defined here are represented. More on this can be found
in [Pachet 91], the expertise is described in [Pachet 87] but represented awkwardly,
and a forthcoming report will present a version of the system as an extension to the
present architecture.

8. Conclusion

The first layer of the MusES system sets the foundations for the study of various
harmonic analysic mechanisms. The basic entites of harmony notes, intervals, scales
and chords are defined as by set of classes, having a structure and a behavior. Our
approach is validated by the "friendly" feel of the overall system and the almost
physical presence of the musical entites, that allow the user to think more naturally,
and by the reusability of these entities, and their capacity to support extensions.

9. References

[Cointe&Briot 89] Cointe P., Briot J.-P. Programming with ObjVlisp metaclasses in
Smalltalk-80, OOPSLA '89, New Orleans, USA.

[Ebcioglu 92] Ebcioglu K. An expert system for harmonizing chorales in the style of
Bach. In Understanding Music with A.I. AAAI Press/ MIT Press, 1992. Ed. by
Balaban M., Ebcioglu K., Laske O.

[Goldberg&Robson 89] Goldberg A., Robson D. Smalltalk-80 : the language and its
implementation. Addison-Wesley 1989 (revised edition).

[MacLaughlin 76]]J. McLaughlin. John McLaughlin and the Mahavishnu Orchestra.
Warner-Tamerlane publishing, Warner Bros. Publishing, New York,1976.

[Pachet 87] F. Pachet. Vers un systéme expert de suivi d'improvisation. Rapport de
DEA TARFA, IRCAM/Paris 6, September 1987.

[Pachet 91] Pachet, F. A meta-level architecture for analysing jazz chord sequences.
Proceedings of ICMC, 1991, pp. 266-269, Montréal, Canada.

An object-oriented representation of pitch-classes, intervals, scales and chords 24

[Pope 91] Pope Steven. The Well-Tempered Object. MIT Press, 1991.

[Slonimsky 47] Slonimsky, N. Thesaurus of Scales and Melodic Patterns. Charles
Scribner's sons, New York, 1947.

[Smaill&Wiggins 90] Smaill, Alan. Wiggins, Geraint. Hierarchical music representation
for composition and analysis. In Colloque International "Musique et assistance
informatique”, pp. 261-279, Marseille, 3-6 oct. 1990.

[Steedman 84] Steedman M.]. A Generative Grammar for Jazz Chord Sequences. Music
Perception, Fall 1984, Vol. n° 2, N° 1, pp. 52-77.

[Winograd 93] T. Winograd. Linguistics and the Computer Analysis of Tonal

Harmony. In Machines Models of Music, Edited by S. M. Schwanauer and D.A. Levitt,
MIT Press, 1993.

An object-oriented representation of pitch-classes, intervals, scales and chords

25

