
Pachet, F. On the embeddability of production rules in object-oriented languages. Journal of Object-Oriented
Programming, Vol. 8, n. 4, July/August 1995, pp. 19-24.

1

On the embeddability of production rules in object-oriented

languages

François Pachet,

LAFORIA - Institut Blaise Pascal, Boite 169,

4, Place Jussieu, 75252 Paris Cedex 05, France

email : pachet@laforia.ibp.fr

Abstract

This article addresses the problem of embeddability of object-oriented production systems.

We propose five important practical issues concerning embeddability, among which the

impedance mismatch problem. We described an extension of Smalltalk to support

production rules (the NéOpus system) and discuss its embeddability according to these

criteria.

I. Introduction

The combination of rules and objects to produce integrated hybrid systems was pioneered by

the seminal LOOPS system [Bobrow&Stefik 83]. A number of integrated systems were

consequently developped which propose a combination of various inference mechanisms

and knowledge representation paradigms, such as KEE, Knowledge Craft and ART. These

systems have traditionally been designed as self-contained inference factories, with few

concerns about inter-software communication and reusability. A recent expert panel [AIII-

90] showed that the lack of impact of Artificial Intelligence in the field of software

engineering was partly due to these isolationist attitudes, and proposed that efforts should be

made not only to produce autonomous inference environments, but also embeddable systems

[Fox 90]. Indeed, embedding deductive facilities in object-oriented settings has been in the

air for quite some time now. Both paradigms are suitable for different kinds of programming

tasks and their integration is needed and desired by both communities: object-oriented

programmers occasionally need non-deterministic, data-driven procedures because these

include an implicit pattern-matching algorithm as well as a more open mode of control.

Conversely, rule base programmers need more sophisticated representations of entities to

Pachet, F. On the embeddability of production rules in object-oriented languages. Journal of Object-Oriented
Programming, Vol. 8, n. 4, July/August 1995, pp. 19-24.

2

represent the "facts" of the world about which rules can talk. Object-orientation allows them

to replace some awkward rules by more appropriate methods or class structures.

There has been propositions of rule-based extensions for virtually all object-oriented

languages on the market : in C++ [Miranker 91], [Eick&Czejdo 93], Eiffel [Fernandez &

Jones 94], CLOS [KnowledgeWorks 91], to mention but a few. This profusion of systems is

a sign of the vitality of research in this area but hides a lack of consensus about what this

integration should be, what are the advantages one can get out of it, what are the prices to

pay in terms of implementation and performance, and, lastly, what kind of methodology this

hybrid programming induces. At LAFORIA lab, we have been working for a few years on

this integration. We present here some of the important issues and result from our point of

view, and propose five major points to classify and compare so-called embedded object-

oriented production systems , hereafter referred to as EOOPS.

Our point of view on this integration is materialized by the NÉOPUS system, written in

Smalltalk-80, which we will describe shortly here. This system is based on an original

presentation of the OPUS system by Atkinson&Laursen, in OOPSLA '87. This article

described a translation of the OPS-5 system [Forgy 81] in Smalltalk-80, and contained the

description of the language as well as the major implementation choices. Since the

publication of this article, we have been experimenting with several versions of OPUS,

eventually coming up with a new system called NÉOPUS. The growing success of the system

in our community of Smalltalk programmers convinced us that the hypothesis made by the

original authors were not only relevant, but opened a whole new world of novel and efficient

programming practice to object-oriented programmers.

II. Vocabulary

To avoid confusion, we use the term Object in the sense of object-oriented programming

languages, i.e. entities gathering data structure (attributes, slots or instance variables) and

behavior (methods). The A.I. community often uses the term object in a looser sense, closer

to the notion of frame, i.e. without methods but with active values, and facets, which objects

do not support. We will use the term rule to refer to forward-chaining production rules, as

exemplified by the OPS-5 system [Brownston & al 85]. These may be seen as non-

deterministic conditional actions. Their canonical form is the standard if-then form: IF some-

conditions THEN some-actions. As we will see, one of the questions a hybrid system should

Pachet, F. On the embeddability of production rules in object-oriented languages. Journal of Object-Oriented
Programming, Vol. 8, n. 4, July/August 1995, pp. 19-24.

3

answer is how are the conditions and actions expressed. Rules are grouped in rule bases

which are activated by an inference engine. The engine works in a continuous loop in which,

at each cycle, a fireable rule is chosen and fired. The execution stops when no more rules are

fireable.

III. Mixing objects and rules : Five questions

We identified five major questions regarding the integration of objects and rules, both from

an engineering and a conceptual point of view. These are general questions whose answers

may be used to classify hybrid systems. We will describe the NÉOPUS answers to these

questions in the next section.

A - Impedance mismatch

The mere presence of classes and methods implicitly defines a language. This language is the

(infinite) set of all expressions built by sending messages to objects, which may themselves

recursively be expressed by a message sending or by a variable. In Smalltalk this language is

roughly equivalent to the programming language, because message passing is the only

programming construct (the only exception is assignment). Other languages introduce

special constructs to express message sending. But in any case, be it explicit or implicit,

there is an "object language", which plays a fundamental role in object-oriented knowledge

representation.

On the other hand, writing rules requires a language to express their condition and action

parts. This language usually allows to specify constraints on attributes, to modify attribute

values, or create so-called "facts". Usually some trap-doors are provided to execute any

action of the underlying implementation language in the action part of a rule.

Embedding a production system in an object-oriented system (in short OOPS) amounts to

assert the equation: {fact-base = object-oriented model of the world}. Facts are represented

by objects, and rules are used to express knowledge involving several objects.

The impedance mismatch problem is the degree of mutual compatibility between these two

languages. This compatibility is not trivial because, since their apparition in the first expert

systems (Mycin, Dendral), rule languages have always relied on the possibility of accessing

the structure of the facts in working memory elements. This is inherently orthogonal to the

object-oriented philosophy which tends to hide data structure from the outside of objects, as

Pachet, F. On the embeddability of production rules in object-oriented languages. Journal of Object-Oriented
Programming, Vol. 8, n. 4, July/August 1995, pp. 19-24.

4

we will see later. Consequently, most hybrid systems actually consist of two different

languages, one for objects, and one for rules. Although it is difficult to define precisely how

this degree of mutual compatibility could be measured, it is sure that the introduction of a

new language is always a source of problems. As a side-effect, a question which is less

fundamental but has important practical consequences is the availability of all the syntactic

constructs of the object language in rules, such as local variables, and differed expressions

(lambda-expressions in Lisp, blocks in Smalltalk).

B - What about encapsulation ?

There are two orthogonal questions regarding encapsulation. These questions are related to

the impedance mismatch problem but we make it a separate issue because the problems they

raise are quite different.

B1: How much does the rule base programmer have to know about the implementation

details of the application to write his rules ?

There is an inherent contradiction in integrating rules and objects, concerning encapsulation:

objects are designed primarily to hide data structure and implementation details, whereas

classical production rule systems are based on the explicit manipulation of structure

(attributes). Indeed, writing expressions mentioning attributes is precisely what

encapsulation allows to avoid, and cannot be considered good software engineering practice!

B2: What are the modifications to add to the application to support the addition of a rule

base layer?

The main interest behind the "embedding" idea is to be able to add a rule-based layer to an

existing application without having to modify and recompile the application. However, a lot

of EOOPS impose constraints on the application objects, such as the inheritance constraint ,

i.e. the classes of objects matched by the rules must inherit from a determined superclass.

C - What about class inheritance ?

Pachet, F. On the embeddability of production rules in object-oriented languages. Journal of Object-Oriented
Programming, Vol. 8, n. 4, July/August 1995, pp. 19-24.

5

Class inheritance is an important aspect of object-orientation. It is important that rules take

class inheritance into account in a natural way. The way rules can take class inheritance into

account is by specifying how rule variables are typed, and what is the meaning of the

implicit universal quantifier. There are three basic possibilities for rule variable typing. Let

us, for instance, consider a rule such as:

 "For any X, instance of Person, If ... then ..."

In this rule, X may either 1) denote direct instances of class Person 2) denote instances of

all its (potential) subclasses, or 3) denote instances of a part of the inheritance hierarchy of

Person. An EOOPS mechanism should provide a reasonable answer to this question by

specifying how the typing of rule variables is realized.

D - What is the status of rule bases ?

The status of rules and rule bases is important from the point of view of integration for

implementation and practical reasons. Some acknowledged problems of rule-based

programming may be answered thanks to object-orientation. We identified two of them :

 - Structuring rule bases

The key mechanism of rule-based programming is non-determinism (here the fact that a rule

is not necessarily fired when it is fireable). Writing large bulks of non-deterministic rules is a

difficult task, because large problems are not usually entirely non-deterministic. Rule bases

strongly need structuring mechanisms.

 - Specification of control

An important question regarding forward-chaining rule bases is the control problem. This

problem, central to any A.I. system, is often a bottleneck in the development of large

knowledge bases. Here again, object-orientation may be used in a variety of ways to support

various types of control specifications.

E - What about logical orders and modes of reasoning ?

Logical orders

Pachet, F. On the embeddability of production rules in object-oriented languages. Journal of Object-Oriented
Programming, Vol. 8, n. 4, July/August 1995, pp. 19-24.

6

Objects are naturally seen as anonymous instances of their class. The classical, first-order

way of accessing, with an implicit universal quantifier ("For any x, instance of C"), is

therefore most adapted to objects. However, first order forward-chaining reasoning is not the

only mode of reasoning. Reasoning without variables (so-called 0-order or propositional

reasoning), although theoretically less expressive than first-order reasoning, may sometimes

be extremely well adapted to some situations, where individual objects play a singular role.

Chaining

There are traditionally two modes of chaining for an inference engine, namely forward and

backward chaining. As we will see, we consider forward-chaining the most interesting

mechanism to be considered for integration with object-oriented languages. Other modes

may be offered, such as more or less directed reasoning, where rules indicate which

following rules are to be considered (as in the Humble system [Piersol 86]).

IV. The NéOpus philosophy

IV.A. An example

We will now describe how the NÉOPUS system answers these five questions, and illustrate

them with the following (artificial) example. We want to represent rules that represent the

expertise about treatments on hyper-tension. We suppose that the following classes are

defined :

A class Patient represents the patients to diagnose and treat. This class defines the

methods bloodPressure, yielding the blood pressure of the patient. We intentionally do

not mention anything about its implementation, as we consider this to be irrelevant to rule

programmers (this is what encapsulation is all about !).

A class Doctor represents doctors, and implements methods maxBloodPressureFor:

which returns the maximum blood pressure for a Patient, according to the Doctor's

expertise. This method is a function of the patient's age, weight, and is highly experimental.

Its result can be computed using tables, histograms, or rules of thumb. To represent this

diversity of possible computations, we are naturally inclined to use class inheritance, and

define subclasses of Doctor, such as PessimisticDoctor, or

HomeopathicDoctor which redefine locally this method.

Pachet, F. On the embeddability of production rules in object-oriented languages. Journal of Object-Oriented
Programming, Vol. 8, n. 4, July/August 1995, pp. 19-24.

7

Class Doctor also defines a method for considering treatment for a patient, once hyper

tension is diagnosed. This method, considerTreatmentFor: is also highly dependent

on the person's state, and the doctor expertise. Several subclasses may also be defined to

represent various types of treatment, such as HomeopathicDoctor or

AllopathicDoctor, to take into account the various idiosyncrasies of blood pressure

treatment.

IV.B. NéOpus

Let us now describe the NÉOPUS solution to our five questions and illustrate them with our

example.

A - Impedance mismatch

The impedance mismatch problem is solved in NÉOPUS by the radical decision : no rule

language is introduced. Condition and action parts of rules are expressed exactly in terms of

Smalltalk expressions, i.e. the object language. The rule syntax is therefore reduced to a

name, a variable declaration part, and the IF-Then construct (here the key-word actions).

For example, let us state a rule that decides on a treatment when blood pressure is too high

as follows:

decideTreatmentHypertension

 | Doctor d. Patient p|

 p bloodPressure > d maxBloodPressureFor: p.

 p hasNoTreatment.

actions

 d considerTreatmentForHypertension: p.

This rule should be read as : "For any d, instance of class Doctor, and any p, instance of

class Patient, if the evaluation of the Smalltalk expressions: "p bloodPressure > d

maxBloodPersonFor: p", and "p hasNoTreatment" both yield true, then the expression

"d considerTreatmentForHypertension: p" should be evaluated.

B - What about encapsulation ?

Pachet, F. On the embeddability of production rules in object-oriented languages. Journal of Object-Oriented
Programming, Vol. 8, n. 4, July/August 1995, pp. 19-24.

8

NÉOPUS adopts a radical attitude towards encapsulation. We consider encapsulation as a key

mechanism of object-oriented programming, and wish to enforce it in the context of rule-

based programming. Our idea is therefore to respect encapsulation as much as possible, and

this translates into two axioms :

B1: Any object may be matched in a rule. There is no constraint on the class of objects

mentioned in the rules. This is very important in our context for two reasons:

- Classes written elsewhere may be used directly without any recompilation. In our

example, this means that the file containing the rules may be "filed in" any time in the

application containing the Doctor and Patient classes without having to recompile

them.

- Classes of the environment may be used in rules, such as collections, metaclasses,

windows and so on. There are approximately 60,000 objects in a standard Smalltalk

image, which makes it a rich environment to reuse. Of course, NÉOPUS allows the

restriction of the initial set of objects to be matched for a given class, to avoid

unnecessary combinatorial explosion.

The second axiom is a consequence of the "one language" choice :

B2: Any Smalltalk expression may be used in premise and condition. In comparison to other

rule-based systems, this means that rules are not limited to manipulations of attribute/values,

and may use freely all the corpus of methods of the language. More precisely, encapsulation

is respected in the sense that the writer of the rule does not need to know anything about the

actual implementation of the classes he uses, as exactly the interface of classes (the set of

methods they implement) - and all of it - may be used.

As for particular syntactic constructs, NÉOPUS allows the presence of local variable in rules

(Cf. rule decideNoTreatment below). Similarly, NÉOPUS allows the presence of blocks

(expressions whose evaluation is differed, written between brackets) containing rule

variables. This is useful when these blocks are evaluated in a reflex-mode, in a continuous

loop for instance, to implement triggers.

C - What about class inheritance ?

Pachet, F. On the embeddability of production rules in object-oriented languages. Journal of Object-Oriented
Programming, Vol. 8, n. 4, July/August 1995, pp. 19-24.

9

In NÉOPUS, we distinguish two ways of typing rule variables, to take class inheritance into

account. In the first - called simple typing - variables denotes direct instances of the classes

with which they are defined in the variable declaration part. On the other hand, in natural

typing, variables denote any instance of any subclass of the class used to declare them. In

this latter case, increased abstraction is given to rules, as their interpretation may vary

depending on the actual instances matching it.

For instance, if let us consider different subclasses of Doctor, having different

implementations for methods maxBloodPressureFor: and

considerTreatmentForHypertension:, such as OptimisticDoctor (who

considers that young people should rarely be given treatment), and HomeopaticDoctor

(who has a standard way of diagnosing hypertension, but a non-standard different way of

considering treatments). Similarly, let us consider a subclass of Patient, such as

HospitalizedPatient, for which method hasNoTreatment is redefined (checks in

the hospital file for instance). Now the preceding rule

decideTreatmentHypertension may be used, without any modification or

recompilation, but with a different interpretation.

This is important with regard to integration because it means that class inheritance can be

used naturally to redefine behavior locally.

Moreover, rules are given more abstraction by delegating the message semantics and

implementation details to the classes. The interpretation of a rule is therefore dynamic, since

the condition and action parts of the rules are entirely expressed in terms of messages sent to

the matched objects. More precisely, let r be a rule that declares n variables vi (i=1, n). Let

Ci be the class declared for vi. Now, if each Ci has ki concrete subclasses, the total

number of possibly different interpretations of r is Π ki (i = 1, n). As a consequence, the

number of rules is drastically reduced, since the same text may be used for any combination

of classes. In a classical rule-based approach, the programmer would have to write Π ki (i

= 1, n) different rules instead of one.

 In our (artificial) example, there are 3 possible classes for Doctor, and 2 for Patient,

making a total of 3*2 = 6 different interpretations of the rule. Moreover, each addition of a

new subclass would require the addition of a set of new rules. Thanks to encapsulation, only

a minimal set of rules needs to be written.

Pachet, F. On the embeddability of production rules in object-oriented languages. Journal of Object-Oriented
Programming, Vol. 8, n. 4, July/August 1995, pp. 19-24.

10

r1
 | Class1 v1. Class2 v2 Class3 v3 |
 If v1 mess1.
 v2 mess2: v3.
 Then
 v3 mess3.

Class1

• •

• •

Class2

• •

• • • •

Class3

• •

• • •

mess1

mess1

mess1

mess2: mess3

mess3mess2:

mess2:

Figure 1. A rule with the corresponding class hierarchies. The rule uses three messages (mess1
through m3) which are defined and redefined in the classes of the corresponding hierarchies.

It is important to note here that in this scheme, the actual semantics of a rule is determined

not by the rule alone, but by the rule together with its instanciation set, at execution time

(usually called the fireable rule and represented by a first-class object in NéOpus).

D - What is the status of rule bases ?

Structuring rule bases

In NÉOPUS, rules are grouped in rule bases. Rule bases are represented by abstract, Smalltalk

classes. This is motivated by several reasons :

- The Smalltalk environment for classes may be used freely for rule bases (browsers,

file in, file out, cross-references). This point has been commented by

[Atkinson&Laursen 87].

- An inheritance mechanism, similar to class inheritance, is introduced for rule bases,

to structure them. This mechanism (Cf. [Pachet 92a] for more details) allows to factor

rules which are common to several rule bases, thereby providing an other way of

reducing the total number of rules written.

For instance, let us introduce a new rule for the case no treatment should be considered:

Pachet, F. On the embeddability of production rules in object-oriented languages. Journal of Object-Oriented
Programming, Vol. 8, n. 4, July/August 1995, pp. 19-24.

11

decideNoTreatment

"If pressure is normal then consider abandoning treatment"

|Doctor d. Patient p|

 p bloodPressure < d maxBloodPressureFor: p.

 p hasTreatmentForTension.

actions

 d considerAbandoningTreatmentFor: p.

We can group the rules decideTreatmentHypertension and

decideNoTreatment in a rule base called StandardDiagnosis. Several sub-bases

of StandardDiagnosis may now be defined, to either add new rules, or redefine

inherited rules. For instance, we can write a specialized subbase of

StandardDiagnosis, called CompleteDiagnosis, that adds rules for treatment of

hypotension, such as :

decideTreatmentHypotension

 | Doctor d. Patient p|

 p bloodPressure < d minBloodPressureFor: p.

 p hasNoTreatment.

actions

 d considerTreatmentForHypotension: p.

CompleteDiagnosis has to redefine the rule decideNoTreatment, to take

hypotension into account, as follows :

decideNoTreatment1

"If pressure is normal then consider abandoning treatment.

Redefined in subbase to take hypotension into account"

|Doctor d. Patient p. Local bloodP|

 bloodP := p bloodPressure.

 bloodP > d minBloodPressureFor: p.

 bloodP < d maxBloodPressureFor: p.

 p hasTreatmentForTension.

1 Notice here the use of a local variable (bloodP), which is used as in standard Smalltalk methods, to
reduce the number of computations and increase readability.

Pachet, F. On the embeddability of production rules in object-oriented languages. Journal of Object-Oriented
Programming, Vol. 8, n. 4, July/August 1995, pp. 19-24.

12

actions

 d considerAbandoningTreatmentFor: p.

By virtue of the rule base inheritance mechanism, the rule base CompleteDiagnosis

contains the three following rules : decideTreatmentHypotension (inherited),

decideTreatmentHypotension (added) and decideNoTreatment (redefined).

Of course, class inheritance is still taken into account and rule base

CompleteDiagnosis may be used using any of the typing mode (natural or simple),

independently of the typing used for the super base StandardDiagnosis.

Specification of control

NÉOPUS proposes two solutions to the control problem, that make full use of object-

orientation. In the first one, control is seen as a procedure for rule-bases, and implemented

by class methods. Executing a rule base consists in sending the rule base (considered as an

object) one of the standard execution messages, such as execute, or

executeWithObjects: (to specify which objects should be filtered by the rules).

In complex cases, however, the procedural solution has well-known limits. In particular it is

difficult to write methods to specify dynamically-changing control strategies. The other

solution proposed by NéOpus is to consider the control problem as a standard knowledge

representation problem, and use - in a reflexive way - NéOpus to solve it. In this scheme, the

activation of a rule base is entirely defined by another rule base (called meta-base). This

meta-base contains rules that specify control, including the actions to perform to choose a

rule in case of conflict, and the management of the fireable rule and the conflict set. In this

latter scheme, meta-bases may be built independently of domain rule bases, and reused in a

variety of applications. For instance, a meta-base was written to specify a control in which

rules are grouped in packs (called protocols in the Smalltalk terminology), and each pack is

considered according to a given sequence. This meta-base is independent of any application

and is used in a variety of domains. Several subbases are written to extend this specification

for more sophisticated modes of controls (Cf.[Pachet & Perrot 1994], and [Pachet&Dojat

92] for a real-world application).

E - What about logical orders and modes of reasoning ?

Logical orders

Pachet, F. On the embeddability of production rules in object-oriented languages. Journal of Object-Oriented
Programming, Vol. 8, n. 4, July/August 1995, pp. 19-24.

13

To overcome the rigidity of first-order reasoning, NÉOPUS introduces the notion of

individual objects that may be seen as a translation of 0-order inference in the world of

EOOPS. In this scheme, certain objects may be considered as named individuals, and given a

special treatment by the inference engine (in our example, we could consider the Hospital as

an individual object). Rules can talk about these objects (by declaring them "global") and the

system may perform 0-order inferences with them. These objects are represented by class

variables for the rule base which uses them. Unlike standard global variables, these objects

are really part of the inference mechanism in that their modifications are taken into account

by the system and rules instanciations updated when necessary.

Chaining

Since many expert system shells support multi-directional chaining (i.e. forward, backward

and so-called bi-directional), this would appear to be an obvious evaluation criterion.

However, we believe there are several good arguments for not supporting multi-directional

chaining in rule-based systems embedded in an Object-Oriented language.

First, procedural languages (such as Object-Oriented Programming languages) are

intrinsically backward chaining : procedures are called explicitly and in turn generate trees of

procedure calls. What is not present is unification (the equivalent of pattern matching) and

backtracking. However, backtracking can easily be simulated in an Object-Oriented

framework (Cf. [Lalonde & Van Gulik 88] for instance).

A second, more technical argument, is that backward chaining is intractable in a general

object-oriented setting. The problem is that backward chaining implies the possibility of

linking the action parts of rules to the condition parts (or goals to sub-goals). This is

possible only if conditions and actions are structurally simple, which is the case for 0, 0+ or

attribute-value based formalisms, but not for general formalisms in a first order object-

oriented language. There is indeed a contradiction between the desire to use an OOP

language to express rules, and the desire to support backward chaining. Backward chaining

can only be supported if we are prepared to impose hard constraints on the programmers

which would seem (to them) to be artificial.

Finally the main advantage of backward-chaining systems such as Prolog, when used as

extensions to already existing procedural formalisms, is the possibility of specifying trees of

Pachet, F. On the embeddability of production rules in object-oriented languages. Journal of Object-Oriented
Programming, Vol. 8, n. 4, July/August 1995, pp. 19-24.

14

goals/subgoals. We claim that this notion is better seen as a "control problem" and should be

solved by proposing particular control strategies.

V. Implementation

Rules are compiled in NÉOPUS using an extended Rete network architecture. This

compilation technique was pioneered by Forgy [Forgy 81], and is considered one of the best

for pattern-matching with many objects (it is for instance, the core of the CLIPS system

[CLIPS 92] made by the NASA for real-time expert systems). It was extended to take full-

fledged objects into account by Atkinson & Laursen, in the OPUS system. The transposition

of Rete in the object world makes it necessary for the programmer to declare explicitly

which objects are modified by the execution of the action part of a rule (this is referred to as

the modified problem). We will not give details on this architecture here, but the reader can

refer to [Atkinson&Laursen 87] and [Pachet 92b] for a complete description. Concerning the

modified problem, we refer to the proceedings of the OOPSLA'94 workshop on EOOPS

[EOOPS Workshop 94] which provides several viewpoints and solutions on this issue.

VI. Interface

A number of related problems find rather elegant solutions in the NÉOPUS system. The

programming interface is translated from the programming interface of Smalltalk-80, which

is one the most sophisticated at the moment. A set of specialized rule browsers, instance

browsers, conflict-set view, steppers were designed to increase rule-based programming,

while retaining the Smalltalk flavor.

A particularly well adapted mode of debugging and visualization for rule execution was

implemented, using a musical score metaphor, introduced by [Domingue & Eisenstadt 91].

With this tool, rule base execution is visualized as a musical score, where time is explicitly

represented as an x axis. To each rule corresponds a position on the y axis, like a pitch on a

score. Each time a rule becomes fireable, a white square is displayed on the score at the

corresponding location. Each time a rule is fired, a black square is displayed (Cf. Figure 2).

As Domingue & Eisenstadt argue, this allows to emphasize - and sometimes reveal ! -

temporal relationships between rules, which are usually not shown in standard textual traces.

Pachet, F. On the embeddability of production rules in object-oriented languages. Journal of Object-Oriented
Programming, Vol. 8, n. 4, July/August 1995, pp. 19-24.

15

Figure 1. Some elements of the NÉOPUS interface.

VII. Conclusion

Pachet, F. On the embeddability of production rules in object-oriented languages. Journal of Object-Oriented
Programming, Vol. 8, n. 4, July/August 1995, pp. 19-24.

16

NÉOPUS has been used in a variety of applications, ranging from real-time control of

respiratory devices in intensive care units (Cf. [Pachet&Dojat 91]), theorem-proving

[Laublet 93], data model transformation [Blain &al. 94] and harmonic analysis [Pachet 91b].

Since no modification of the domain classes is needed whatsoever to write rules bases, a

simple file-in of the NÉOPUS system turns any Smalltalk application into a fully-fledged

knowledge base. Besides, since rule bases are standard Smalltalk classes, hence global

objects, they may be executed by any object of an application.

Finally, their execution may be easily controlled by asynchronous messages without any

modification of the inference mechanism. A number of actor-based applications using the

Actalk system [Briot 89] have been extended with a NÉOPUS rule base component, to

experiment with multi-agent programming. Lastly, its open character of makes it a very

valuable tool for teaching knowledge representation techniques in the framework of object-

orientation.

NÉOPUS is implemented in Smalltalk-80, version 4.1. Implementations in other dialects of

Smalltalk is in progress, as a collaborative project with the Canadian company OTI.

The system is available by anonymous ftp2. We encourage interested readers to test and use

the system, and communicate any comments.

VIII. References

[AAAI-90] Panel "AI and Software Engineering : Will the Twain Ever Meet ?". Proc. of

AAAI 90, pp. 1123-1129. (1990).

[Atkinson&Laursen 87] Atkinson, R. and Laursen, J. Opus: a Smalltalk Production System.

Proc. of OOPSLA '87 pp. 377-387. (1987).

[Blain & al 94]. Blain, G. Sahraoui, H. Revault, N. Perrot, J.-F. A Meta-modelisation

technique. OOPSLA'94 Workshop on Artificial Intelligence and Object-Oriented Software

Engineering. Portland, Oregon, Oct. (1994).

[Bobrow&Stefik 83]. Bobrow, D.J., Stefik M. The LOOPS Manual. Xerox Palo Alto

Research Center, Dec. (1983).

2 The site is ftp.ibp.fr, login under anonymous with electronic address as password. The sources are
tarred and compressed under softs/laforia/sourcesNeOpus. A Web page is also available at
http://www-laforia.ibp.fr/~fdp/NeOpus.html. It runs on Smalltalk 4.1, on any platform supported
by ParcPlace. It requires the Parser generator tool from APOK (ParcPlace). A list of current users is
maintained and information broadcast to users.

Pachet, F. On the embeddability of production rules in object-oriented languages. Journal of Object-Oriented
Programming, Vol. 8, n. 4, July/August 1995, pp. 19-24.

17

[Briot 89] Briot, J.-P. Actalk : A Testbed for Classifying and Designing Actor Languages in

the Smalltalk-80 environment. Proc. of ECOOP '89, pp. 109-130. (1989).

[CLIPS 92] CLIPS Reference Manual, v 5.1, NASA, Jan. (1992).

[Brownston&al. 85] Brownston, L. Farrell, R. Kant, E. Martin, N. Programming Expert

Systems in OPS5. An Introduction to Rule-Based Programming. Addison-Wesley Publishing

Company, (1985).

[Domingue & Eisenstadt 91] Domingue, J. Eisenstadt, M. A new metaphor for the graphical

explanation of forward-chaining rule execution. Proc. of IJCAI '91, Sydney, Australia, pp.

129-134. (1991).

[Eick&Czejdo 93] Eick, C.F. Czejdo, B.Reactive rules for C++. Journal of Object-Oriented

Programming, Vol 6, n° 6, pp. 56-62, Oct. (1993)/

[EOOPS Workshop 94] Pachet, F. Proceedings of the OOPSLA'94 Workshop on Embedded

Object-Oriented Production Systems. LAFORIA Internal Report, University of Paris 6, n.

94/24. (1994).

[Fernandez & al 94] Fernandez, R. Zubizareta, J.-R.Embedding of rule-based expert system

capabilities in object-oriented applications by using or simulating active behaviour. Proc. of

TOOLS Europe '94, Paris, March (1994).

[Forgy 81] Forgy, C.L. OPS-5 User Manual. Department of Computer Science, Carnegie-

Mellon University, (1981).

[Fox 90] Fox, M. Looking for the AI in Software Engineering : An Applications Perspective.

In [AAAi-90], pp.1128-1129. (1990).

[Humble 86] Piersol, K.W.The Humble Reference Manual. Xerox Special Information

Systems, June (1986).

[KnowledgeWorks 91]. Knowledge Works: Guide for new Users. Harlequin, 1991.

[Lalonde & Van Gulik 88]. Lalonde, W. Van Gulik, M. Building a backtracking facility for

Smalltalk without kernel support. Proc. of OOPSLA '88, pp. 105-123 (1998).

[Laublet 93] Laublet, P. Hybrid Knowledge Representation and Theorem Proving in

Mathematics. In Artificial Intelligence in Mathematics, J.H. Johnson S. McKee & A. Vella

(Eds), Oxford University Press, (1994).

[Miranker 91]. Miranker, D. & al. The C++ embeddable rule system. Proc. of Int. Conf. on

Tools for Artificial intelligence, San Jose, Nov. 91, pp. 386-393 (1991).

[Pachet 91] Pachet, F. Reasoning with objects : the NéOpus environment. Proc. of Conf.

East EurOOpe, Bratislava, Tchécoslovaquia, Sept. (1991).

[Pachet 91b] F. Pachet, A meta-level architecture for analysing jazz chord sequences. Proc.

of International Conference on Computer Music, pp. 266-269, Montréal, Canada, (1991).

Pachet, F. On the embeddability of production rules in object-oriented languages. Journal of Object-Oriented
Programming, Vol. 8, n. 4, July/August 1995, pp. 19-24.

18

[Pachet 92a] Pachet, F. Rule Base Inheritance. Proc of Conf. "Object-Oriented

Representations", La grande Motte, France, June (1992).

[Pachet 92b] Pachet, F., Knowledge Representation with objects and rules : the NéOpus

system. Ph.D. Thesis (in French), Universite Paris-6, Laforia, Paris, France, Sept. (1992).

[Pachet&Dojat 91] Pachet, F. Dojat, M. Representation of a Medical Expertise Using the

Smalltalk environment: putting a prototype to work. Proc. of TOOLS 7, Dortmund,

Germany, March 31-April 2, (1992).

[Pachet & Perrot 1994]. Pachet, F. & Perrot, J.-F. Rule Firing with Metarules. Proc. of

Software Engineering and Knowledge Engineering - SEKE '94, Jurmala, Latvia. Knowledge

System Institute Ed. pp. 322-329, 21-23 June (1994).

[Piersol 86] Piersol, K.W. The Humble Reference Manual. Xerox Special Information

Systems, June (1986).

