
Pachet, F. Roy, P. Integrating constraint satisfaction techniques with complex object structures. 15th Annual Conference of

the British Computer Society Specialist Group on Expert Systems. Cambridge, Dec. 1995, pp. 11-22.

1

Integrating constraint satisfaction techniques with complex object

structures

François Pachet, Pierre Roy

Laforia-IBP, Université Paris 6, Boîte 169

4, place Jussieu,

75252 Paris Cedex

Tel: (33) 1 44277004

Fax: (33) 1 44277000

E-mail: pachet{roy}@laforia.ibp.fr

Abstract:

Integrating constraint satisfaction techniques with complex object structures is highly

desirable. Several libraries are now available to use algorithms off-the shelf and embed them

in large object-oriented systems. However, the design of complex object + constraint

problems is an open issue that severely limits the applicability of available libraries. We

compare two radically different approaches in designing systems integrating objects and finite

domain constraints. In the first approach, constraints are defined within classes and constrain

attributes of the class, thereby introducing "partially instanciated" objects in the reasoning. In

the second approach, constraints are defined outside classes, and constrain fully instanciated

objects. We show that, for a particular class of problem, the second solution yields a simpler

design while being more efficient. We exemplify our claims by comparing these two

approaches on a hard object + constraint problem: four-voice harmonization of tonal

melodies, seen as a representative complex configuration problem.

1. Introduction

Finite domain Constraint Satisfaction Programming (CSP) is a well know and powerful

representation paradigm for solving complex combinatorial problems. This domain of activity

emerged from the confluence of several research fields : constraint logic programming

[Jaffard & Lassez 87], [Van Hentenryck 89] operation research and optimization, and

artificial intelligence [Laurière 78]. On the other hand, object-oriented programming and

representation languages have become commonplace in knowledge representation. We are

interested in combining the two paradigms for building large knowledge-based systems. This

integration raises two kinds of issues: technical issues, related to the adaptation of existing

algorithms to complex object structures in place of the usual atomic values, and conceptual

issues related to the design of problems using the combination of OOP and finite CSP.

 The paper is organized as follows. In section 2, we briefly introduce the BackTalk

system, a canonical integration of objects, in the sense of object-oriented programming, with

finite CSP. In section 3, we distinguish between two main approaches in designing an object +

CSP problem and compare their advantages and disadvantages on a simple example. We

Pachet, F. Roy, P. Integrating constraint satisfaction techniques with complex object structures. 15th Annual Conference of

the British Computer Society Specialist Group on Expert Systems. Cambridge, Dec. 1995, pp. 11-22.

2

propose a scheme (section 4) that combines the advantages of both solutions, and we report

(section 5) on a concrete complex problem: automatic harmonization.

2. Objects and finite domain CSP : the BackTalk system

We are interested in building large knowledge-based systems by combining traditional and

sound artificial intelligence techniques with object-oriented technology. Our previous work on

NéOpus [Pachet 95], an extension of Smalltalk to first-order production rules, provided us

with valuable experience on the building of such large hybrid systems integrating different, if

not orthogonal mechanisms. The key goal of our work is to be able to reuse as much as

possible existing representations rather than rewriting everything from scratch. Before

introducing our approach, we will first review briefly previous attempts in combining objects

with various kinds of constraints mechanisms, then introduce the field of finite domain CSPs,

and finally describe our system BackTalk.

2.1. Integrating objects and constraints

Since the seminal works of Borning on integrating constraints with objects - embodied in the

ThingLab system [Borning 81] - many ideas have been proposed to enforce a smooth

integration of constraints mechanisms within object-oriented programming languages. This

evolution of ideas has materialized for instance in the kaleidoscope system [Freeman-Benson

& all 90] and its various extensions [Lopez & al 94]. Kaleidoscope integrates several

mechanisms for constraint satisfaction including local propagation and simplex for real

numbers, and finite-domain solver for Booleans. As [Freeman-Benson & Borning 92] recall,

most of the early constraint-based systems were based on a perturbation model of constraints.

In this model, constraints are used to restore the state of a system after an external

perturbation, such as a user interaction. Most of the mechanisms used to enforce this model

are based on local propagation techniques. Interest has now shifted to the so-called

refinement model in which the set of possible values of variables is progressively refined

through the execution of the program, but never altered by outside events. This motivated our

interest in embedding finite-domain constraints satisfaction mechanisms with objects.

2.2. Definition of finite domain CSPs

A finite domain CSP (Constraint Satisfaction Problem) is a problem defined by 1) a set of

variables taking their value in a finite set of values (the domain), and 2) a set of constraints on

these variables. A solution of a CSP is an instanciation of the variables that satisfies all the

constraints. Solving a CSP consists in finding one or all possible solutions, if any. The

standard algorithm to solve a CSP is backtracking. Backtracking instanciates progressively the

variables, and after each instanciation, checks the partial solution against all the instanciated

constraints.

 This algorithm is, of course, very inefficient on average. The inherent inefficiencies of

backtracking have led to the development of techniques to reduce its complexity. The most

widely used technique is arc-consistency. It consists in reducing the domains of the variables

before or during the actual enumeration, by considering each constraint individually. The first

arc consistency algorithm was Waltz's filtering algorithm [Waltz 72]. Mackworth improved it

with AC-3 [Mackworth 77]. Mohr & Henderson designed AC-4 [Mohr & Henderson 86], an

optimal algorithm. Unfortunately AC-4 is slower than AC-3 on a lot of CSPs, because is

requires too complex data structures [Wallace 93]. The recent algorithm AC-5 [Deville & Van

Hentenryck 91], has been shown to be better than AC-4 on specific CSPs, but not on average

Pachet, F. Roy, P. Integrating constraint satisfaction techniques with complex object structures. 15th Annual Conference of

the British Computer Society Specialist Group on Expert Systems. Cambridge, Dec. 1995, pp. 11-22.

3

cases. More recent algorithms like AC-6 [Bessière 94] and AC-7 [Freuder et al. 95] yet

improve the theoretical average complexity of arc-consistency.

 Arc consistency may be applied before the actual backtracking, as well as during the

enumeration. In this latter case, each instanciation is followed by a more or less complete arc-

consistency process. The first one in this family of algorithms (called tree search algorithms)

is Forward-Checking [Nadel 88]. In forward-checking the consistency process is limited to

the constraints involving the currently instanciated variable. In so-called look ahead strategies,

the consistency process checks all the constraints [Nadel 88]. Another strategy is backjumping

[Prosser 93a]. Both strategies can be combined in several ways [Prosser 93b], yielding even

more efficient enumeration algorithms.

2.3. Objects and finite domain CSPs

An interesting approach is the LAURE system [Caseau 94], which proposes a very efficient

implementation of constraint-satisfaction mechanisms embedded with objects. However,

LAURE includes a particular object model (called an object-oriented knowledge

representation language), which, although interesting in many points, is not usable in our

context, since we want to reuse existing object-oriented programs. Among the constraint-

solvers built as extensions of existing object-oriented languages, our approach is to be

compared to systems such as COOL [Avesani & al 90], which integrates a finite-domain

solver to the KEE programming environment. KEE objects, however, are closer to frames

than to objects in the sense of object-oriented programming. Similarly, the Prose system,

integrates finite-domain constraint satisfaction mechanisms on top of Smeci, an object-

oriented extension to the Le_Lisp language. The system presented here bears a lot of

resemblance in principle to the Prose system, and owes much to the work of Berlandier on

algorithms for finite-domain constraint satisfaction [Berlandier 92]. On the commercial scene,

the system IlogSolver also proposes finite-domain mechanisms embedded in C++ [Puget 94].

IlogSolver uses proprietary algorithms clearly aimed at efficiency, while providing many

hooks for inserting user-specific procedures. IlogSolver as a library has much of the desired

features for smooth embeddability, except its lack of a powerful interface and programming

environment. As far as Smalltalk is concerned, no finite-domain solver has, to our knowledge,

yet been developed.

2.4. The BackTalk system

We designed BackTalk [Pachet & Roy 95], an environment to test and compare existing

algorithms and their integration with Smalltalk object structures. The main idea of BackTalk

is to build a library of existing algorithms and make them available as extensions to arbitrary

Smalltalk applications.

 The main algorithms implemented in BackTalk are a generalization of AC-3 to n-ary

and functional constraints [Berlandier 92] for arc-consistency, and a parameterized

enumeration algorithm inspired by [Kökeny 94]. Extensions to AC-4 and AC-5, as well as

look-ahead strategies have also been implemented, as well as algorithms combining

backjumping with look-ahead strategies. After several experiments of BackTalk on classical

problems, we were not convinced of the urgency of implementing much more sophisticated

algorithms, such as AC-6 [Bessière 94].

 Our contribution in the field is two-fold: First we propose a finite-domain solver

smoothly integrated in the Smalltalk language. This allows to apply constraint mechanisms to

Pachet, F. Roy, P. Integrating constraint satisfaction techniques with complex object structures. 15th Annual Conference of

the British Computer Society Specialist Group on Expert Systems. Cambridge, Dec. 1995, pp. 11-22.

4

arbitrary Smalltalk programs. Second, we show that the integration of objects with finite-

domain constraints is not so natural as it first seems, and that, in a way, constraints may be

"incompatible" with the object structures of the original program. We propose a practical

solution to effectively achieve integration while preserving the object structures of the original

program.

3. Two main designs for finite CSP + objects problems

We claim that there are two main approaches for the design of problems integrating complex

objects structures and finite CSP. In order to exemplify this claim, we will take a simple

example in the domain of planar geometry. The example is the following:

Problem Statement (P)

Find all pairs of non trivial quadrilaterals satisfying the following set of constraints (C) :

C1 - All vertices have integer coordinates in {1 .. n}.

C2- For all vertices, the x and y coordinate are different

C3 - All quadrilaterals are straight rectangles.

C4 - The two rectangles do not intersect.

Figure 1 shows a solution of (P) when n = 10.

R1

R2R3

Figure 1. A solution of problem (P) is a pair of rectangles satisfying the set of constraints (C). The

pairs of rectangles {R1, R3} and {R2, R3} are possible solutions; pair {R1, R2} is not. In a space with

coordinate ranging from 1 to 6, there are 90 solutions.

3.1. Designing the problem as an object + CSP problem

The main task in finding an object + CSP formulation of problem P is to identify the variables

to be constrained.

 A first formulation consists in specifying the problem only with point variables, and

considering points as atomic entities1. In this representation the constraints must be stated

entirely in terms of point variables. For instance, constraint C4 could be stated as follows:

x(b) < x(a') "R1 on the left of R2"

or x(a) > x(b') "R1 on the right of R2"

or y(c) > y(a') "R1 above R2"

or y(a) < y(c') "R1 below R2"

1 We will see later that our architecture can accomodate the case when only integer are considered atomic, and

points considered as aggregates.

Pachet, F. Roy, P. Integrating constraint satisfaction techniques with complex object structures. 15th Annual Conference of

the British Computer Society Specialist Group on Expert Systems. Cambridge, Dec. 1995, pp. 11-22.

5

where a, b, c, d (resp. a', b', c', d') are the coordinates of R1 (resp. R2), and x and y are the

functions yielding the x and y coordinate of the points (Cf. figure 2).

In this solution there are :

• 8 variables, representing the 8 vertices, each one with a domain of size (n2 - n).

• 9 constraints (C1 and C2 are represented as domains, 8 binary constraints for expressing

C3, one 8-ary constraint for C4).

R1

R2

a b

c d

a’ b’

d’c’

Figure 2. Stating constraint C4 in terms of points.

 The second formulation is based on the remark that the first approach does not make

use of existing object structures and methods: since the problem statement contains

constraints involving rectangles (C4) and that the domain is defined in terms of Point

objects, a natural solution consists in specifying a problem with both "rectangle variables" (i.e.

variables whose domain is collection of rectangle objects) and point variables. The main

interest of this solution is to allow the statement of constraints using fully-fledged objects. For

instance, constraint C4 could be stated as :

 not (intersects (r1, r2)),

where r1 and r2 are rectangle objects.

In this solution there are :

• 2 variables, representing the 2 rectangles, each one with a domain of size N! / (N-4)!

 where N = n2-n (the number of possible points).

• 1 binary constraint, for C4.

3.2. Comparison

These two ways of designing the problem lead to various kinds of difficulties in the

declaration phase. We now review these difficulties.

 In the first solution, constraints are difficult to state, because they involve only "lower-

level" objects. In our previous example, imagine a constraint involving three rectangles!

Moreover, classes defining the domain objects (here class Point and class Rectangle)

may not be simply reused for the problem solving. In our example, class Rectangle is "by-

passed" by the definition of constraints (more precisely, constraint C4 bypasses method

intersects).

Pachet, F. Roy, P. Integrating constraint satisfaction techniques with complex object structures. 15th Annual Conference of

the British Computer Society Specialist Group on Expert Systems. Cambridge, Dec. 1995, pp. 11-22.

6

 In the second solution, constraints are stated using higher-level objects (here class

Rectangle). These higher-level objects are used as such, (method intersects in class

Rectangle), and play a central role in the formulation. Also, the constraints involve less

variables (recall that the arity of constraints is a crucial parameter for performance). In our

example, C4 has 8 variables in the first solution, and only 2 in the second one.

The problem is that rectangle variables have no domain a priori. Therefore a lot of objects

have to be created: in our case it is roughly equal to the Cartesian product of domain sizes of

the variables making up a rectangle. Although the collection of all possible rectangles in a

finite 2-dimension space is, of course, finite, it is practically unreasonable to build this

collection prior to the resolution.

 These two approaches are graphically represented in Figure 3. The first one

corresponds to a problem with partially instanciated objects, i.e. objects whose attributes are

constrained variables. In the second one, constraints are stated between fully instanciated

objects.

?

?

?

? ?

?

?

?

C4

??
C4

Figure 3. The two design approaches in object + finite CSP problem solving. Solution 1 is on the left,

solution 2 on the right.

4. Our approach

Based on the preceding discussion, we propose a scheme that combines the advantages of the

second solution (declarativity, possibility of reusing existing classes, constraints with lesser

arity), while avoiding the systematic creation of all higher-level objects.

4.1. Separation of the problem in successive resolutions

Our scheme is based on the idea that the number of higher-level objects can be reduced by

solving a preliminary CSP with only constraints over lower-level objects. The solutions of this

preliminary CSP constitute the domains of the variables representing the higher-level objects.

The first phase has the following steps:

• Creation of a CSP involving only lower-level objects, and constraints between these objects.

• Enumeration of all solutions.

The second phase is:

• Creation of a CSP involving higher-level objects and constraints between these objects. The

domain of these higher level variables are the solutions of the preceding CSP.

• Enumeration of all solutions.

In our rectangle example, the first CSP is the following :

Pachet, F. Roy, P. Integrating constraint satisfaction techniques with complex object structures. 15th Annual Conference of

the British Computer Society Specialist Group on Expert Systems. Cambridge, Dec. 1995, pp. 11-22.

7

CSP 1

• variables: a, b, c, d whose domains are the list of all possible points (size n(n-1)),

• constraints: There are four binary constraints, expressing the fact that a, b, c, and d make

up a straight rectangle:

x(a) = x(c)
and y(a) = y(b)
and x(b) = x(d)
and y(d) = y(c)

Let S be the set of solutions for CSP1. The size of S is n! / (n-4)!. This size is in O(n4), to be

compared with O(n8) in the naive version of the second solution.

CSP 2
• variables: r1, r2 , with domain S.

• constraint: one binary constraint expressing the fact that r1 and r2 do not intersect, and using

method intersects defined in class Rectangle.

Finally, CSP2 is solved, yielding all pairs of rectangles satisfying (C). Summing up the two

phases, the total complexity of the problem using this approach is therefore in O(n4), with

only binary constraints.

4.2. Generalization

The resolution scheme presented here can be generalized to problems involving more than

two levels of composition. For instance, in the problem (P) there are two composition levels

if we consider the points as atomic objects, but there are three levels (coordinates, points and

rectangles) if we consider points as aggregate structures.

 In general, problems may include an arbitrary number, say c, of composition levels. In

this case we claim that designing and solving the problem into c different phases, each phase

corresponding to a particular level, leads to considerable improvements:

• When solving a CSP with the first method, the variable ordering heuristic is fixed for the

duration of the whole resolution. With our separation scheme, we can use a specific

variable ordering heuristic for each phase of the resolution, and more generally exploit

available meta knowledge specific to each phase.

• We saw that this separation allows to easily reuse existing classes without any

modification.

• The amount of constraints and variables needed, when designing a CSP with our

separation scheme, is much less important than with the first solution.

4.3. Execution time on the rectangle example

Computing the exact theoretical complexity of the two approaches is difficult. We give here

some experimental results in execution time for each solution. Note that the absolute

execution time are not important here (experiments were made on a PC/Pentium), only the

relative performance are interesting:

For n = 4, there are 6 possible straight rectangles, and 62 couples of rectangles. There

are 14 solutions of (P).

Pachet, F. Roy, P. Integrating constraint satisfaction techniques with complex object structures. 15th Annual Conference of

the British Computer Society Specialist Group on Expert Systems. Cambridge, Dec. 1995, pp. 11-22.

8

BackTalk took 15 seconds to enumerate all solutions using the first approach, and 9ms

using the second approach with our separation scheme.

For n = 6, there are 90 possible straight rectangles, and 902 couples of rectangles.

There are 4090 solutions of (P).

BackTalk took 5 minutes to enumerate all solutions using the first approach, and 2

seconds using the second approach with our separation scheme.

These preliminary results show clearly the advantage of our approach over the first approach,

at least in terms of performance.

5. A complex application : Automatic Harmonization

We will now show how the design in the rectangle problem can be applied to a large and

complex problem, in the field of musical harmonization.

5.1. The musical problem

Music analysis and generation have long been a favorite domain for researchers in Artificial

Intelligence. Within AI, Object-Oriented Programming has traditionally been a favorite

paradigm to build complex musical systems: the Formes system [Cointe & Rodet 1991] to the

MODE system [Pope 1991], the Kyma system [Scaletti & Johnson 88]), and

ImprovisationBuilder [Walker and al. 1992] to name but a few. The "Automatic

Harmonization Problem" (hereafter referred to as AHP) is particularly representative of the

field. It consists in finding harmonizations of a given melody (such as the melody in Figure 4),

or, more generally, an incomplete musical material, that satisfies the rules of harmony (and

counterpoint, if rhythm is taken into account). The standard AHP is to harmonize four voices

(see Fig. 5 for a possible solution).

 The constraints needed to solve the AHP are consensual, and can be found in any

decent treatise on harmony, such as [Bitsch 57]. The problem is interesting as a benchmark

because it involves a lots of complex object structures (notes, intervals between notes, chords,

intervals between chords, scales, etc.). Moreover, there are various types of constraints which

interact intimately: 1) horizontal constraints on successive notes of a melody, such as: "two

successive notes should make an interval of a seventh" or leading note rises to the tonic", 2)

vertical constraints on the notes making up a chord, such as "no interval of augmented fourth,

except on the fifth degree", or "voices do not cross", and 3) constraints on sequences of

chords, such as "two successive chords should not have the same degree".

Figure 4. An initial melody to harmonize (a part of the French national anthem, 18 notes).

5.2. Harmonization as an object + constraint satisfaction problem

Harmonization of a given melody naturally involves the use of constraints, because of the way

the rules of harmony are stated in the textbooks. Indeed, several systems have proposed

various approaches to solve the AHP using constraints. The pioneer was Ebcioglu [Ebcioglu

92], who designed a specific constraint logic programming language (BSL) to solve this

specific problem. His system not only harmonizes melodies (in the style of J.-S. Bach), but is

also able to generate new chorales from scratch. Although interesting, the architecture is

Pachet, F. Roy, P. Integrating constraint satisfaction techniques with complex object structures. 15th Annual Conference of

the British Computer Society Specialist Group on Expert Systems. Cambridge, Dec. 1995, pp. 11-22.

9

difficult to transpose in our context because constraints are used passively, to reject solutions

produced by production rules. Ebcioglu also uses real intelligent backtracking, which is not

always more efficient than forward checking algorithms, but a lot more complex to maintain.

Figure 5. A solution proposed by BackTalk from the initial melody of Figure 4.

 More recently, [Tsang & Aitken 91] proposed to solve the AHP using CLP, a

constraint extension to Prolog [Jaffard & Lassez 87]. The results of Tsang & Aitken were

unrealistic : 5 minutes and 70 Megs of RAM were needed to solve the AHP on an 11-note

melody (see Figure 7), making his approach not very encouraging. Ovans [Ovans 92] was the

first to introduce the idea of using arc-consistency techniques and CSP to solve the

harmonization problem, but his system was very poorly structured, as all the musical concepts

had to be represented as number variables, thereby imposing an unnatural bias on the

representation of the musical entities.

 The system proposed by Ballesta [Ballesta 94] is much more promising. Ballesta uses

Pecos (an earlier version of IlogSolver) to solve the AHP, and uses both object structures and

finite-domain constraints. The results of Ballesta are listed in Figure 7. The main drawback of

this work (in our context) is that Ballesta's system is too radical: everything is stated in terms

of constraints, and objects are defined only as structures, designed merely to support the

constraints. More precisely, objects are defined by a set of attributes, but all the relations

between the attributes are stated in terms of constraints. For instance, to represent one interval

instance, 12 attributes are defined, such as the name of the interval (e.g. diminished fourth), its

type (e.g. fourth), its two extremities, represented as instances of class Note, etc. Nine

constraints are then introduced to state the relations that hold between the various attributes of

class Interval. For instance, a constraint links the name of the interval to the various

attributes of its extremities (the octave and name of the note). As a result, his representation is

indeed very rich, since any request can be made on any partially instanciated interval. For

instance, the user can ask for the set of notes yielding an interval of a fourth with a given note,

etc. The same scheme is applied to all the entities of the domain: notes, intervals, scales and

chords. One note instance is represented by 6 constrained variables, one interval by 9

constrained variables, and so forth. To solve the AHP on a n-note melody, Ballesta uses

(126*n - 28) constrained variables. The total amount of constraints is therefore very high,

while the total number of methods is very low.

5.3. Critics of preceding approaches

As Figure 7 shows, the approaches which have been proposed using constraints yield poor

results in terms of performance. There are, from our point of view, two lessons to learn from

these experiments:

Pachet, F. Roy, P. Integrating constraint satisfaction techniques with complex object structures. 15th Annual Conference of

the British Computer Society Specialist Group on Expert Systems. Cambridge, Dec. 1995, pp. 11-22.

10

1- There are too many constraints. The approaches proposed so far do not structure the

representation of the domain objects (notes, intervals, chords). When such a structure is

proposed (as in Ballesta's system) objects are treated as passive structures.

2- The constraints are treated uniformly, at the same level. This does not reflects the reality : a

musician reasons at various levels of abstraction, working first at the note level, and then on

the chords. The most important harmonic decisions are actually made at the chord level. This

separation could be taken into account to reduce the complexity.

 These remarks led us to reconsider the AHP problem, with a reverse viewpoint from

our predecessors. Rather than "starting from the constraints", and devising object structures

that fit well with the constraints, we "start from the objects", and fit the constraints and the

constraint satisfaction mechanism to them. Indeed, a lot of properties of the domain objects

may be more naturally described as methods instead of constraints. To do so, we propose to

reuse a fully-fledged object-oriented program, the MusES system, which contains a set of

classes that represent the basic elements of harmony, such as notes, intervals, scales and

chords. We start from MusES and add constraints on top of it to represent the rules of

harmony. Not only the resulting system will be faster (because methods are faster than

constraints), but we claim that it also will be more intelligible.

5.4. The analogy between AHP and the rectangle problem

Seen from this point of view, the AHP is analogous to the rectangle problem discussed above.

The analogy is the following: notes are analogous to points, chords to rectangles. As far as

constraints are concerned, the analogy is still valid: there are constraints on notes only (range

constraints), constraints between notes, and constraints between chord objects (the equivalent

of constraint C4). Following this analogy, Ballesta's system correspond to the first approach

described in the rectangle example. We will now propose a solution of the same problem

using the second approach with our separation scheme.

5.5. The MusES system

The MusES system is a project to represent consensual knowledge about basic harmony in

Smalltalk [Pachet 94]. From the musical point of view, the aim of MusES is to study the

adequacy of various representation techniques to capture the essence of musical structures,

starting from the most simples ones (notes, enharmonic spelling, intervals, scales, and so

forth) to the most sophisticated ones (analysis, tonalities, support for improvisation, etc.).

 MusES contains around 90 classes and 1500 methods. All these operations are

represented using object-oriented programming (usually methods in the associated classes).

Of course, this approach is less general than the one using purely constraints. Our approach is

indeed much different: instead of proposing a general framework in which relations are stated

and arbitrary computations are at the user's hand, we impose a fixed set of "essential"

computations which are fast, while being easy to understand and modify. The example of the

notion of interval is typical. The MusES approach is based on the remark that only three types

of operations are important with intervals: (1) computing an interval given 2 notes, (2)

computing the top note given the bottom one, and 3) computing the bottom one given the top

one. Several other less important operations are also considered, like adding two intervals.

MusES therefore contains specific methods to compute intervals given two notes, or notes

given an interval.

Pachet, F. Roy, P. Integrating constraint satisfaction techniques with complex object structures. 15th Annual Conference of

the British Computer Society Specialist Group on Expert Systems. Cambridge, Dec. 1995, pp. 11-22.

11

 Several extensions are currently developed to MusES to test various ideas in musical

representation [Pachet 91], [Ramalho & Ganascia 94], thereby validating the construction of

MusES as a general purpose library.

5.6. BackTalk and MusES to solve the AHP

In accordance with the analogy given above, we apply our resolution scheme to AHP as

follows, by breaking the problem into two parts:

1) Management of the constraints at the note level only.

Input of the n-note melody and creation of a CSP with only constraints on notes.

Arc-consistency is applied to reduce the domains of the note variables.

2) Management of the constraints at the chord level.

Computation of the concrete instances representing all the possible chords under each note.

Creation of a second CSP including only the higher level objects, i.e. chords variables and

constraints involving chords.

Arc-consistence is applied, followed by the enumeration of solutions with forward-

checking.

 In this scheme, given a n-note melody, the total CSP contains (4*n) variables for the

notes plus n variables for the chords, which are handled in the second phase. The results are

given in Figure 7. As we can see, we are an order of magnitude faster than previous

approaches. The memory needed is not significant.

1

2

• Input n-note melody

• Build CSP with constraints on notes (4n variables)

• Arc-consistency

• Computation of chord domains

• Creation of second CSP with n constrained variables (chords)

• Arc-consistency

• Enumeration by forward-checking

Figure 6. Diagram of the architecture.

 11 notes 12 notes 16 notes

Tsang&Aiken (CLP) 5 m. Sparc 1, 70Mg ram ? ?

Ballesta (Pecos) 3 m. 4 m.

BackTalk + MusES 12 sec. 13 sec. 20 sec.

Figure 7. Comparative results of BackTalk + MusES.

6. Conclusion

We are interested in the integration of finite domain CSP with object oriented programming

languages, from a technical and a conceptual point of view. We introduced BackTalk, a

testbed for studying the integration of current algorithms with Smalltalk. We showed on a

simple example drawn from geometry that two main approaches are possible for the design of

complex objects + CSP problems. We compared these solutions and showed their respective

advantages and drawbacks. We propose a scheme based on the separation of the problem in

Pachet, F. Roy, P. Integrating constraint satisfaction techniques with complex object structures. 15th Annual Conference of

the British Computer Society Specialist Group on Expert Systems. Cambridge, Dec. 1995, pp. 11-22.

12

successive phases that allows to combine the advantages of both approaches. Each phase

corresponds to a level in the composition hierarchy of the domain objects. We illustrate our

scheme on a problem known to be complex (automatic harmonization) and show that our

approach clearly outperforms preceding attempts at solving the same problem. These results

encourage us to continue studying our approach. In particular, we are trying to find formal

specifications of complex object + CSP problems for which our scheme can be safely applied.

7. Reference

Avesani, P. Perini, A. Ricci, F. (1990) COOL: An Object System with Constraints.

Proceedings of TOOLS'2, Angkor, Paris, pp. 221-228.

Ballesta, P. (1994) Contraintes et objets : clefs de voûte d'un outil d'aide à la composition ?

Ph.D. Thesis, INRIA, Sophia Antipolis, November 1994.

Berlandier, P. (1992) Etude de mécanismes d'interprétation de contraintes et de leur

intégration dans un système à base de connaissances. Ph.D. Thesis, INRIA, 1992.

Bessière, C. (1994) Arc consistency and arc-consistency again. Artificial Intelligence, 65, pp.

179-190.

Bitsch, M. (1957) Précis d'Harmonie tonale. Ed. Alphonse Leduc.

Borning, Alan, H. (1981) The programming language aspects of ThingLab, a constraint

oriented simulation laboratory. ACM transaction on Programming Languages and

Systems, 3 (4) pp. 353-387.

Caseau, Y. (1994) Constraint Satisfaction with an Object-Oriented Knowledge Representation

Language. Journal of Applied Artificial Intelligence, 4, pp. 157-184.

Cointe, P. Rodet, X. (1991) Formes: Composition and Scheduling of Process. In The Well-

Tempered Object: Musical Applications of Object-Oriented Software Technology , S. T.

Pope, ed. MIT Press.

Deville, Y. Van Hentenryck, P. (1991) An efficient arc-consistency algorithm for a class of

CSP problems. Proceedings of IJCAI '91, pp. 325-330.

Ebcioglu, K. (1992) An Expert System for Harmonizing Chorales in the Style of J.-S. Bach, In

M. Balaban, K. Ebcioglu & O. Laske (Ed.), Understanding Music with AI: Perspectives

on Music Cognition, The AAAI Press, California.

Freeman-Benson, B. (1990) Kaleidoscope: mixing objects, Constraints, and Imperative

Programming. Proceedings of ECOOP/OOPSLA 90, Ottawa, pp. 77-88.

Freeman-Benson, B. Borning, A. (1992) Integrating constraints with an object-oriented

Language. Proceedings of ECOOP '92, Utrecht, Springer-Verlag Lecture Notes in

Computer Science, vol. 615, pp. 268-286.

Freuder, E.C. Bessière, C. Régin, J.C. (1995) Using inference to reduce arc-consistency

computation. Proceedings of IJCAI'95, Montréal, pp. 592-598.

Jaffard, J. Lassez, J.-L. (1987). Constraint logic programming. 14th POPL, Munich, 1987.

Kökeny, T. (1994). Yet another object-oriented constraint resolution system (YAFCRS) : an

open architecture approach, Proceedings of TOOLS USA 94, Prentice-Hall, Santa

Barbara, pp. 103-114.

Laurière, J.L. (1978). A language and a program for stating and solving combinatorial

problems. Artificial Intelligence, Vol. 10, pp. 29-127.

Lopez, G. Freeman-Benson, B. Borning, A. (1994). Constraints and Object Identity.

Proceedings of ECOOP '94, Bologna (Italy), Springer-Verlag Lecture Notes in

Computer Science, vol. 821, pp. 260-279.

Mackworth, A. (1977). Consistency on networks of relations. Artificial Intelligence, (8) pp.

99-118, 1877.

Pachet, F. Roy, P. Integrating constraint satisfaction techniques with complex object structures. 15th Annual Conference of

the British Computer Society Specialist Group on Expert Systems. Cambridge, Dec. 1995, pp. 11-22.

13

Nadel, B. (1988) Tree search and arc-consistency in constraint satisfaction algorithms. Search

in Artificial Intelligence, Springer-Verlag, pp. 287-340.

Mohr, R. Henderson, T. C. (1986). Arc and path-consistency revisited. Artificial Intelligence,

vol. 28, n. 2, pp. 225-233, 1986.

Ovans, R. (1992) An Interactive Constraint-Based Expert Assistant for Music Composition.

Proc. of the Ninth Canadian Conference on Artificial Intelligence, University of British

Columbia, Vancouver, 1992.

Pachet, F. (1991) A meta-level architecture for analyzing jazz chord sequences. International

Conference on Computer Music, pp. 266-269, Montreal, Canada.

Pachet, F. (1994) The MusES system : an environment for experimenting with knowledge

representation techniques in tonal harmony. First Brazilian Symposium on Computer

Music - SBC&M '94, August 3-4, Caxambu, Minas Gerais (Brazil), pp. 195-201.

Pachet, F. (1995) On the embeddability of production systems in object-oriented languages.

Journal of Object-Oriented Programming , Vol. 8, n. 4, July/August 1995, pp. 19-24.

Pachet, F. Roy, (1995) P. Mixing constraints and objects: a case study in automatic

harmonization. Proceedings of TOOLS Europe '95, Versailles, Prentice-Hall, pp. 119-

126.

Prosser, P. (1993a) Domain filtering can degrade intelligent backtracking search. Proceedings

of IJCAI'93, Chambéry (France), pp. 262-267.

Prosser, P. (1993b) Hybrid algorithms for the constraint satisfaction problem. Computational

intelligence, Vol. 9, pp. 268-299.

Puget, J.-F. (1994) Programmation logique sous contraintes en C++. Proceedings of

"Langages et modèles à objets" LMO'94, Grenoble (France), October 1994.

Pope, S. (1991) Introduction to MODE: The Musical Object Development Environment. In

The Well-Tempered Object: Musical Applications of Object-Oriented Software

Technology , S. T. Pope, ed. MIT Press.

Ramalho, G., Ganascia, J.-G. (1994) Simulating Creativity in Jazz Performance. Proceedings

of 12th AAAI conf. Seattle, Aug. 1994.

Scaletti, C. Johnson, R. E. (1988) An interactive environment for object-oriented music

composition and sound synthesis. Proceedings of OOPSLA '88, pp. 222-233, San Diego.

Tsang, Chi Ping & Aitken, M. (1991) Harmonizing music as a discipline of constraint logic

programming. Proceedings of ICMC '91, Montréal, pp. 61-64.

Van Hentenryck, P. (1989) Constraint satisfaction in Logic programming. MIT Press,

Cambridge, MA, USA.

Walker, W., Hebel, K., Martirano, S., Scaletti, C. (1992) ImprovisationBuilder: improvisation

as conversation, Proc. of ICMC , 1992.

Wallace, R.J. (1994) Why AC-3 is almost always better than AC-4 for establishing arc-

consistency in CSP. Proceedings of IJCAI 93, Chambéry, France, pp. 239-247.

Waltz, D. (1972) Generating semantic descriptions from drawings of scenes with shadows.

MIT Technical report, AI271, 1972.

