
Pachet et al. Representing temporal musical objects in the MusES system, Journal of New Music Research, 25:3, 252-75 1996

Representing temporal musical objects and reasoning in the

MusES system

François Pachet, Geber Ramalho and Jean Carrive

LAFORIA-IBP, Université Paris 6,

Boîte 169, 4, Place Jussieu, 75252 Paris, France.

E-mail: pachet@laforia.ibp.fr

ABSTRACT. We describe a representation framework for temporal objects and reasoning in the
MusES system. The framework is claimed to be use-neutral within the context of tonal music. It
is based on the use of an object-oriented programming language, Smalltalk, and makes full use
of two main representation mechanisms: class inheritance and delegation. We describe the
kernel of the representation framework and explain the main design choices. We show how the
kernel can be used and extended to represent important temporal concepts related to tonal
music. The framework is validated by the realization of two substantial applications: an
automatic analyser for chord sequences, and a simulator of jazz improvizations.

1. Introduction

1.1. OOP and musical knowledge representation

Object-Oriented Programming (OOP) has traditionally been a favorite paradigm to build
complex musical systems (see e.g. the special issue of the Computer Music Journal, 13 (2),
1989 on the use of Smalltalk for musical systems). This adequacy of object-oriented
programming to musical representation has given birth to an impressive list of famous musical
systems: the Formes system, to specify interacting concurrent musical processes (Cointe &
Rodet 1991), the MODE system, a environment for the development of tools for musical score,
sound processing and performance (Pope 1991), the Kyma system, a graphic environment
dedicated to digital audio processing and computer-aided composition (Scaletti 1987), and
more recently Improvisation Builder, a framework for simulating jazz improvisation, seen as a
particular kind of communication between agents (Walker et al., 1992).

Following this movement, we are deeply convinced that the structures and mechanisms of
object-oriented programming are particularly well suited for effective musical knowledge
representation. We conducted a series of experiments aiming at studying more particularly the
representation of knowledge related to tonal music. These experiments are embodied in a
system called MusES [Pachet 94]. The MusES system contains a representation of the basic
concepts of tonal harmony such as pitch classes, notes, intervals, chords, scales, and melodies.

An important claim underlying the MusES effort is that it is possible to provide a use-neutral
representation, within the context of tonal music. By use-neutral, or application-independent,
we mean that these representations may be used by specific applications as is, with only minor
modifications if any. This claim is backed up by the philosophical assumption that there exist
some common sense layer of musical knowledge which may be made explicit. We will not
discuss the validity of this hypothesis here, and will take it for granted in the context of this
paper.

Pachet et al. Representing temporal musical objects in the MusES system, Journal of New Music Research, 25:3, 252-75 1996

Another requirement of our work is that we want our system to effectively capture consensual

musical knowledge1 in all its complexity. This requires our representation paradigm to be
expressive enough for this task.

Several applications have been built using MusES that address specific problems of tonal
music: a system that performs automatic analysis of jazz chord sequences (Mouton & Pachet
95; Pachet 91), a system that performs automatic harmonization of monophonic chorales
satisfying the rules of harmony and counterpoint (Pachet & Roy 95), a system that generates
jazz improvisation in real time using a case-based model of memory (Ramalho & Ganascia 94).
Other applications are in progress that use the same MusES kernel, such as an interface based
on the Harmony Space concept of (Holland 94), and a pattern induction system (Rolland &
Ganascia 96).

 In this paper we describe the design choices made for representing temporal musical
knowledge. This representation is claimed to be use-neutral, like the rest of the MusES system,
and hence effectively reusable. We will first introduce our temporal model and then show how
it fulfills our requirements. The design choices are validated by the realization of two
substantial applications. For each of them, we will show how the basic classes were reused, and
how the particularities of each temporal model could be easily represented and implemented
using this framework.

1.2. Object-oriented Design: the fury of wild reification

Although it is extremely difficult to give a precise account of the modeling process necessary to
produce a "good" object-oriented design of a real word problem, there are certain important
guidelines that rule - more or less explicitly - the modeling activity. One of them is that only
interesting objects should be reified, i.e. made explicit and given a first class status. By
interesting we mean objects on which particular things have to be said, assertions stated,
properties described, which are significantly different from other existing entities of the
ontology. Although this principle may sound trivial, it is far from being the case in practice. We
will give here some examples of which concepts of tonal music have been deemed interesting
to reify, and which concepts have not. Since the quality of a good design comes precisely from
these design choices, we will give some of the arguments which led to these decisions.

2. Our Temporal model

2.1. Temporal models for music representation

Time plays an important role in music, and hence in musical knowledge representation. Several
theories of time have been developed in Artificial Intelligence, using different temporal
primitives: intervals (Allen 84), points (McDermott 82) or events (Kowalski & Sergot 86).
From a purely theoretical standpoint, the choice of primitives emphasis the dimension of time
considered as fundamental in the problem solving context. However, the three approaches
entertain strong relationships, and have been proved equivalent in terms of expressiveness
(Tsang 87) .

The model we propose here uses interval primitives. In this model, time is represented by
intervals, having a start time and a duration. Allen (1983) showed that only 13 binary relations
may be stated between two time intervals (meets, finishes, overlaps, etc.) Our model may be
seen as a particular implementation of Allen's model, with important extensions as we will see
below.

1 By "consensual knowledge", we mean the layer of knowledge commonly agreed upon by musicians.

Pachet et al. Representing temporal musical objects in the MusES system, Journal of New Music Research, 25:3, 252-75 1996

2.2. Temporal versus non temporal musical objects

The MusES system contains an object-oriented representation of consensual musical objects,
with their most common properties and operations. The system contains about 100 classes (in
the sense of object-oriented programming) and 1700 methods, representing properties and
operations associated with these classes.

In the process of identifying the consensual musical objects, we realized that there is a lot of
musical knowledge related to concepts having no temporal extension : pitch classes, octave-
dependent notes, intervals, scales, chords, etc. Of course, some of these concepts also have
temporal extensions. For instance, "actual" notes (in a melody) can be seen as octave-dependent
note "plus" a temporal interval. These temporal concepts have specific properties that their non
temporal counterpart do not have, such as precedence relations.

Therefore, we distinguish between two categories of objects: objects with no temporal
extension hereafter called non-temporal objects, and objects having a temporal extension,
called temporal objects. As we will see, our representation framework for temporal objects will
provide a certain kind of relation between these two categories of objects.

In the first category, we include non-temporal concepts such as:

- pitch-classes (e.g. A, Bb, F##). These objects entertain a non trivial algebra of alterations.
Typically, enharmonic spelling is taken into account here (Pachet 94b),

- octave-dependent notes (e.g. A4, Bbb3, etc.) They represent "materializations" of pitch-
class in a given octave. These notes entertain special relationships with regards to intervals,
since the scale is no longer circular,

- intervals (e.g. minor third, augmented fourth). They are also represented as first class
objects. Methods allow the computation of the extremities of an interval given a note, or
the computation of an interval given a couple of notes,

- chords. We distinguish between pitch-class chords (such as [C min 7]) with no reference to
particular octaves, and octave-dependent chords having an explicit pitch-list (a list of
octave-dependent notes). Methods allow to compute chords from chord names or lists of
notes, and conversely compute lists of notes from chord names, as well as the list of
plausible tonalities.

- other objects such as scales (e.g. C# harmonic minor) and signatures (akin to scales), and
more abstract objects such as tonalities and analysis (e.g. {II of Eb major}).

The second category of objects includes objects having a temporal extension such as:

- temporal notes. These are the temporal equivalent of OctaveDependentNote. They are
actually called "Playable notes" since they contain also various information related to
performance such as amplitude, midi channel, and so forth.

- temporal chords. These are the temporal equivalents of octave-dependent chords,
- melodies (monophonic and polyphonic) and more generally objects representing collections

of temporal objects.

It is important to note here that some sort of symmetry exists between temporal and non-
temporal objects. PlayableNote is the temporal equivalent of OctaveDependentNote,
and PlayableChord the temporal equivalent of OctaveDependentChord, and so forth.
However, this symmetry is not systematic. All non-temporal objects do not have necessarily a
temporal equivalent. For instance, PitchClass objects exist only as non-temporal entities;
the concept of TemporalPitchClass has not been introduced (though it could have been
from a purely technical standpoint), because no specific consensual properties of temporal
pitch-classes have been found so far. Similarly, scales have no temporal equivalent.
Conversely, some temporal objects do not have non-temporal equivalent. For instance, the
notion of Measure (a part of a chord sequence or of a melody) has no non-temporal

Pachet et al. Representing temporal musical objects in the MusES system, Journal of New Music Research, 25:3, 252-75 1996

equivalent. An extreme case is the notion of MusicalSilence which, by definition, is
useless in a non-temporal context.

2.3. The temporal kernel in MusES

The temporal kernel in MusES is organized around the three following basic classes:

- Lapse
Defines a time interval by two attributes : startTime and duration. The methods
implemented in class Lapse are of three types:
1) basic access methods (temporal primitives), such as endBeat, and methods for comparing
the temporal primitives between two lapses.
2) the 13 Allen primitives for the sake of completeness (meets: overlaps:, and so forth).
3) a set of specific methods such as intersectsOrEqualTo:, generallyContains:,

finishesBeforeOrEqualTo: and so forth. Although these methods are redundant with
the preceding ones, they are useful in practice.

Representing lapses increases the flexibility of the system. Firstly, in specific cases, subclasses
of Lapse may be introduced (see section 3.4). Second, lapses can be passed as parameters to
general purpose methods, for instance to access elements in a temporal collection (see below).

- TemporalObject
Defines a temporal object in general. The basic temporal object defines an attribute lapse
holding an instance of the class Lapse. Concrete subclasses will specialize this class as seen
below.

Note that this representation is to be opposed to the design choice made in the MODE system
(Pope 1991); where lapses are represented independently from musical objects, through
"association objects" held in temporal collections. From our point of view, the main difference
between the two approaches is the following. In a performance-oriented context (the context of
the MODE system), the main role played by temporal object classes is object generators:
temporal objects are created from scratch, and MODE provides a wealth of tools to create
collection of notes yielding certain characteristics. Lapses are then better represented "outside"
notes, which facilitates editing operations (such as copy/cut/paste), and improves the
modularity of the code. In an analysis-oriented context (the context of the MusES system),
temporal object classes have to support a variety of analysis tasks, which are most of the time
based on local manipulation and local pattern recognition sub-tasks (see below for a
description of the analysis application, and the pact system, section 4.2.1). Therefore, notes
have to somehow "know" their lapse directly, to facilitate the representation of these tasks.

- TemporalCollection
Represents a collection of temporal objects. Class TemporalCollection is defined as a
subclass of SortedCollection, and ensures that its elements are sorted temporally, i.e.
according to their lapse. This class defines all standard access protocol, such as getting all the
temporal objects within a given lapse, computing the intersection between two temporal
collections, etc.

2.4. Defining temporal objects with the kernel

All meaningful temporal objects are defined using one or both of the two main construction
mechanisms of object-oriented programming:

• Inheritance, i.e. defining a subclass of one of these classes. A simple example of the use of
class inheritance is class MusicalSilence, defined as a subclass of

Pachet et al. Representing temporal musical objects in the MusES system, Journal of New Music Research, 25:3, 252-75 1996

TemporalObject, thereby inheriting attribute lapse, and adding specific behavior.
Similarly, class PlayableNote is defined as a subclass of TemporalObject (see
Figure 1).

• Delegation
 The mechanism of simple inheritance is not sufficient to define all the temporal concepts

we need : simple inheritance forces the designer to choose one and only one superclass
for each class. For instance, the class PlayableNote will be defined as a subclass of
TemporalObject, thereby inheriting from attribute 'lapse'. However, all the
information pertaining to OctaveDependentNote will not be inherited. The use of
delegation, as discussed in (Lieberman 86), provides an alternative to multiple
inheritance that is often both more natural, and easier to implement. The delegation
mechanism consists in defining a class with an attribute holding an instance of another
class, to which a significant part of incoming messages are delegated. The main interest
in using delegation is to allow a clear separation of behavior between classes.

 In MusES, this mechanism is extensively used to define collections of temporal objects
(Cf. Figure 2). For instance, class MonophonicMelody is defined with an attribute
"elements" holding an instance of TemporalCollection, and representing its actual
notes. All messages pertaining to the list of notes are systematically delegated to this
object (Cf. section 2.5).

In order to facilitate the use of these mechanisms, we introduce two intermediary concepts, that
will be particularly useful to define new types of delegating temporal concepts:
TemporalObjectWrapper, and TemporalCollectionWrapper.

TemporalObject

MusicalSilence TemporalObjectWrapper
 (element)

PlayableChord

OctaveDependentNote

Chord

Measure

Scale

PitchClass

OctaveDependentChord

Interval

Hierarchy of temporal classes Non temporal classes

PlayableNote

Figure 1. On the left, a part of the hierarchy of temporal classes, stressing the dichotomy

between temporal and non temporal objects. Attributes are between parenthesis. On the right,

some non-temporal classes. Vertical arrows represent the class/subclass relationship. Dashed

lines represent the delegation relationship.

TemporalObjectWrapper is a subclass of TemporalObject that defines an attribute
(element) holding an instance of a TemporalObject subclass. The main characteristic of
this class is that it delegates all messages not pertaining to time to its element attribute.

TemporalCollectionWrapper follows the same pattern, though for collections. It
defines an attribute elements, holding an instance of TemporalCollection. The main
characteristic of this class is that it delegates all messages pertaining to temporal collection to

Pachet et al. Representing temporal musical objects in the MusES system, Journal of New Music Research, 25:3, 252-75 1996

its elements attribute. A typical example is class MonophonicMelody, defined simply as
a subclass of TemporalCollectionWrapper, thereby inheriting the delegation behavior
to its list of notes. Moreover, a primary assumption of class MonophonicMelody is that
silences are not represented explicitly, because they can be a priori deduced automatically from
the actual notes in the collection. We will see in section 4.2 how silences may be introduced
explicitly if needed.

TemporalCollectionShapeList

MonophonicMelody

PolyphonicMelody ChordSequence

TemporalCollectionWrapper (elements)

AbstractMelody

Figure 2. Classes representing various concepts of temporal collections. Vertical arrows

represent the class/subclass relationship. Horizontal lines represent the delegation

relationship.

2.5. Automatic delegation versus multiple inheritance

In order to minimize the representation and programming effort, we propose to automate the
definition (and compilation) of delegating methods. The idea is to exploit reflective facilities of
the underlying language (Foote & Johnson, 1989) to modify the interpretation of messages
dynamically, through the redefinition of the interpretation of error messages, coupled to a
dynamic compilation of delegating methods. In this scheme, for instance, each time a playable
note object receives a message pertaining to its delegate (octave-dependent note) it will: 1)
provoke an error because the class PlayableNote does not understand the message, 2)
compile the delegating method, 3) re-send the message to itself, which will eventually result in
the delegation to the octave-dependent note object.

For instance, the first time an instance of TemporalNote receives, say, message fourth,
our mechanism will compile the following method in class TemporalNote :

fourth
 ^element fourth

The message fourth is then sent again to the same instance which will now delegate it to the
OctaveDependentNote object (attribute element, inherited from class
TemporalObjectWrapper), and yield the expected result. Note that the compilation of this
method is performed automatically, the first time an instance of class TemporalNote
receives message fourth. Subsequent messages will be directly interpreted by this
automatically compiled method. The same mechanism is used for each subclass of
TemporalObject having some non-temporal equivalent.

Note that multiple inheritance could be an alternative here, but it would not solve the problem:
it provides another formulation which does not lead to a simpler design. Instead of choosing the
right simple inheritance tree, the problem becomes the choice of the right conflict resolution
strategy. This is not the approach we followed here.

Pachet et al. Representing temporal musical objects in the MusES system, Journal of New Music Research, 25:3, 252-75 1996

We will now describe briefly two applications of the MusES system which both use intensively
the temporal model described here. Each application has specific needs concerning the
temporal model, which are not taken into account on the kernel. We show how these specific
needs are represented simply using inheritance and delegation.

3. Application 1: analysis of jazz chord sequences

3.1. Background

The aim of the MusES analysis system is to build up a model for the analysis of jazz chord
sequences, as found in the standard corpus of (Real 81), or (Fake 83; 91). Our goal is to build a
fully operational model that account for most of the regularities found in this corpus.

The problem of jazz chord sequence analysis consists in computing, for a given chord sequence
the underlying tonality of each of its chords. The main characteristics of this analysis is that it
is hierarchical: a tune may be globally in C major, but some parts of it may be in F
(modulations), and so on. Generally speaking, harmonic analysis produces a tree with which
each chord of the sequence may be analyzed, at several levels of abstractions. Lastly, the aim of
the analysis is usually to provide, for each chord of the sequence, indications to the musicians
for improvisation. These indications are the underlying tonalities (at all levels of abstractions),
as well as identifications of well-known "patterns" that make sense for the improviser, because
he will be able to use pre-defined licks well adapted to these patterns.

Several attempts have been made to provide computational models for automatic harmonic
analysis of tonal pieces, using various techniques: procedural (Ulrich 77), (Smoliar 1980),
grammar-based (Steedman 84; Winograd 68), rule-based (Maxwell 92) or constraint-based
(Steels 79). No system, however, has proposed a fully operational model that accounts for the
specificity of Jazz chord sequences.

3.2. The theory behind, revisited

Like classical harmony, tonal jazz harmony is a well studied domain, as one can see by
browsing at the numerous books written on this subject (Coker 64). However, to our
knowledge, no book attempts at providing a model for the analytic process per se. The
situation is actually comparable to the situation in linguistics : if lots of works have attempted
to find grammars for natural languages, only few operational models of language understanding
have been developed.

Before describing our model for analysis, we propose to formalize the problem around three
major points, as follows:

A) Basic principles
The theory is based on two major principles:
 1) A "legality" principle
This principle says that each chord, out of any context, can be analyzed in a fixed set of
possible tonalities. A tonality is faithfully represented as a scale (a list of notes) and a degree.
For instance, a C major chord may be analyzed as: I st degree of C major scale, IVth degree of
G major, Vth of F major, VI of E harmonic minor, and so forth. The computation of this "legal
set" is entirely deterministic.
 2) A minimization principle
In a context, the choice of the "good" tonality for a chord will of course depend on its location,
and its relation with adjacent chords. The main idea here is that the best tonality is the one that
minimizes modulations, i.e. that is common to the greatest number of adjacent chords. For

Pachet et al. Representing temporal musical objects in the MusES system, Journal of New Music Research, 25:3, 252-75 1996

instance, the sequence (C / F / E min / A min) has only one tonality that is common to all
chords: C major.

B) Perturbations
This nice and simple theory is complicated by phenomena that escape rigorous formalization,
but which are essential to capture the essence of the process: substitutions and idioms.

First, some chords may be substituted by others, and the substitute often violates the legality
principle. For instance, a seventh chord that resolves may be substituted by its tritone seventh
(C7 -> F#7). Second, there are a number of well-known idiomatic "musical shapes" that bear
particular harmonic meaning in themselves. This is the case of "two-fives", turnarounds, and
other similar shapes. These shapes are remarkable in that they may be analyzed out of their
context. Thus, the sequence "Cmaj7/A 7/Dmin7/Db7" is in itself a turnaround in C major,
regardless of the fact that C major does not belong to the legal set of Db7. In other terms, Db7
in abstracto may not be analyzed in C major, but can be within such a musical shape.

C) Recursion
Lastly, the process is recursive. This means that any recognized shape may itself be considered
as atomic for a higher level of analysis. This recursive nature accounts for the hierarchical
nature of the analysis. For instance, resolving seventh chords may be considered as
preparations, and therefore integrated to their resolving chord. Typically, the sequence: "A7 /
D7 / G7 / C" may be entirely analyzed in C major, thanks to a recursive reasoning (see Figure
3).

A7 / D7 / G7 / C

D7

G7

C

Figure 3. The hierarchical nature of the analysis of a group of chords.

At a highest level, global macro forms are introduced in a similar fashion. Thus, a Blues is

identified by a succession of 3 musical shapes, covering 12 bars, and such that the fourth of the

root of the middle one's tonality is equal to the root of the first and of the last shape. Structures

such as AABA or ABAB may be described similarly.

3.3. The analysis reasoning in MusES

The reasoning process is represented by a series of rule bases that perform two kinds of tasks:

• a "pattern recognition" task, in which higher level shapes are identified from configurations

of lower level shapes,

• a "forgetting" task, in which irrelevant or redundant shapes are destroyed.

Other rules describe shapes such as resolutions (A7 / D), turnarounds, and substitutions. More

abstract rules describe more complex phenomena such as "modal borrowing": a local

modulation may be considered as non significant in certain cases, when it comes in between

two shapes analyzable in the same tonality (Cf. Figure 4).

Pachet et al. Representing temporal musical objects in the MusES system, Journal of New Music Research, 25:3, 252-75 1996

shape X

in C

shape Z

in C

shape Y in

C min

shape T in C

Figure 4. Modal borrowing configuration.

For instance, here is the rule (in a Smalltalk-like pseudo syntax) that recognizes a two-five in

major (such as "Dmin7/G7"):

majorTwoFive

FOR a1 a2 instances of AnalysableObject
IF

 c1 isMinor.
 (c1 hasA: #flatFifth) not.
 c2 isAfter: c1.
 c2 isMajor.
 c2 hasA: #minorSeventh.
 c2 root pitchEqual: c1 root fourth.
THEN

Create a TwoFive, x.
 x beginBeat: c1 beginBeat; endBeat: c2 endBeat.
 x tonality: (c2 root fourth majorScale);

Establish composition link between x and c1 and c2 .

At the end of the reasoning, the complete analysis tree is produced. The system is now in the

evaluation phase, and already proved capable of analyzing blues chord sequences deemed

difficult by (Steedman 84).

3.4. Needs for management of circular time

Shape objects are naturally represented as particular temporal objects. The analysis system was

therefore built using the temporal model of MusES. However, we need to distinguish between

several time models for chord sequences, depending on the task to perform on them : the time

model most adapted to analysis is not necessarily the same than the model to be used for

performance. Indeed, there is an important specificity of the temporal model underlying jazz

chord sequences. Instead of a linear model of time, a circular model of time is more

appropriate for analyzing jazz chord sequences, since the end of a tune usually turns back to its

beginning.

This difference is not only superficial. As far as analysis is concerned, our experiments showed

that the circular characteristic of the corpus was extremely important, and allowed to solve

ambiguities inherent to tonal harmony. For instance, in blues tunes such as "Blues for Alice"

(Charlie Parker), the underlying tonality of the starting chord (F major) can only be ascertained

by linking it with the unresolving seventh chord (C 7) of the end of the tune: the unresolving

end of the tune ensures the tonal stability of the beginning of the tune (Cf. Figure 5).

 C (I)

D-7 (II) G 7 (V) C (I)

 D-7 (II) G 7 (V)

Figure 5. A normal 2-5-1 on the left. A 2-5-1 that wraps around the end/beginning of the song

on the right.

Pachet et al. Representing temporal musical objects in the MusES system, Journal of New Music Research, 25:3, 252-75 1996

More generally, we frequently need to manipulate abstract temporal shapes that can wrap

around the beginning of a song.

Although we could use a purely linear model of time (such as Allen's), this would imply a

systematic test for each form to be manipulated. For instance, testing that there is indeed a 2-5-

1 structure beginning at the end of a tune and ending at its beginning requires a special

treatment. With a circular model of time, only one rule is necessary. The same holds for all

aggregation rules. Note that the circularity of time has to be introduced in the model itself.

This led us to introduce a circular representation of time in our model. The initial model was

simply extended by introducing a subclass of the original Lapse class, called

CircularLapse. We will now describe this new class in more details.

3.5. Circular lapses

3.5.1. Purely circular lapses

Introducing circularity in the Allen formalism amounts to wrapping time around, so that the

referential switches from an infinite segment (linear) to a circle. There are various ways one

can introduce circularity in the classical Allen relations. The first and straightforward way to

switch from Allen's linear representation to a circular representation is by wrapping around the

bounds of intervals. For each relation in the linear model correspond several relations in the

circular model, depending on "how far" the intervals are stretched around. Starting from one

Allen’s relation, we obtain different circular relations by stretching the ending bound of the

right-most interval up to each valid topological location, the last one being its beginning bound.

We reiterate the same procedure with the left-most interval. For example the linear relation

before yields nine circular relations. We showed (Pachet & al. 96) that there are nine possible

ways of wrapping time around.

Adding up all the possible relations, we get twenty-six distinct relations for the circular model

as shown in Figure 6. Note that we do not consider here intervals that last more than one

period, since time would not be circular anymore, and would be better seen as a kind of spiral.

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26

Figure 6. The 26 relations of the pure circular model.

Pachet et al. Representing temporal musical objects in the MusES system, Journal of New Music Research, 25:3, 252-75 1996

3.5.2. Circular Lapses with an origin date

Now in both representations (linear and pure circular) an origin date can be introduced.

Because the origin date can be placed at any position within the topology of the binary relation,

the number of relations between two intervals increases greatly. In the Allen linear model there

are one to nine possible positions. Figure 7 illustrates the is finished by relation where the

origin date may be located at seven different positions.

Figure 7. Seven ways to add an origin date in the is finished by (or finished) linear

relation.

In the linear case, the introduction of an origin date yields 101 different binary relations; and

150 in the circular case (see Figure 8). This is the model we use in the analysis system.

Pachet et al. Representing temporal musical objects in the MusES system, Journal of New Music Research, 25:3, 252-75 1996

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

101 102 103 104 105 106 107 108 109 110

111 112 113 114 115 116 117 118 119 120

121 122 123 124 125 126 127 128 129 130

131 132 133 134 135 136 137 138 139 140

141 142 143 144 145 146 147 148 149 150

Figure 8. All 150 possible binary relations for circular model with origin date. The

straight line indicates the temporal origin.

Pachet et al. Representing temporal musical objects in the MusES system, Journal of New Music Research, 25:3, 252-75 1996

3.5.3. Lapses that cover a period

There is a third distinction that can be made, with regards to intervals covering the entire time

span: this is the case for time intervals covering the entire period of time. It can be interesting

to say that all intervals covering the entire time span are equivalent. This amounts to

withdrawing phase information from the representation of intervals. In this case, the total

number of binary relations is diminished, since some of the previous binary relations become

equivalent (e.g. relations 1 and 4 in Figure 8). Since this second model is subsumed by the

preceding one, we did not implement it (see (Carrive, 1995) for details).

Table 1 summarizes the total possible numbers of relations, depending on the characteristics of

the circular model. The various models are discussed in depth in (Pachet & al. 96), including

the linguistic issue raised by the high number of circular intervals.

Circular Model without origin with origin

with phase 26 150

without phase 19 113

Linear Model 13 101

Table 1 : Number of relations for the circular and linear models in each model.

3.6. Representation

As we saw above, the basic class Lapse represents lapses in a linear time. We introduce class

CircularLapse which inherits from Lapse, and adds an instance variable that represents

the duration of a period. Similarly, class CircularLapseWithOrigin class inherits from

CircularLapse. These circular lapses are then used as default values for the lapse attribute

of shape objects (themselves defined as particular temporal objects).

All the possible binary relations are not implemented as explicit methods in these classes, and

only primitive access methods are implemented. A current work in progress is to find a

reasonable classification of these relations together with a meaningful vocabulary.

3.7. Usefulness of the model

The most complete temporal model is the model illustrated in figure 8, with origin dates and

with phase. This is the one we used for the analysis system. The introduction of our circular

model allows to reduce drastically the number of rules in the expertise for analysis. Moreover,

certain properties between shapes are easier to state with this model, than with the linear one,

such as properties involving union or intersections of shapes.

The comparison between the two models is straightforward: there has to be somewhere in the

knowledge base "tests" about the relation between a temporal shape and the end of the tune. In

the linear model, these tests have to be written in the rule making up the expertise. In our

circular model, the tests are buried in the temporal primitives of the model, thereby reducing

the overall complexity of the system.

4. Application 2: Simulation of jazz improvisation

4.1. Brief overview of the model

The MusES system knowledge representation framework, as well as the result of the Harmonic

Analysis system discussed previously, are used in the system ImPact (Ramalho & Ganascia 94;

Ramalho & Pachet 94), which generates a bass line given a jazz chord grid as found in

Fake/Real books (Fake 1983; 1991). In order to represent faithfully the environment of the bass

Pachet et al. Representing temporal musical objects in the MusES system, Journal of New Music Research, 25:3, 252-75 1996

player, we enrich the system's input by the introduction of a scenario. This scenario contains

symbolic events related to the other musicians actions (e.g. “soloist using Dorian mode” or

"drummer is playing louder and louder") and audience reactions (e.g. "applause" or "boo").

Departing from statistic-based (Ames & Domino 92, Levinson & Wescott 1993) or grammars-

based (Steedman 1984, Sundberg & Lindblom 1993, Johnson-Laird 1991) attempts to

formalizing musical knowledge, we use an explicit representation of musical actions, through

the notion of PACTs (from Potential ACTions). These PACTs, initially introduced by Pachet

(1991b) typically include actions such as "play diatonic scale in the ascending direction during

this measure”, “play this lick transposed one step higher”, “play more and more loud until the

end of the improvisation section” and so on.

With respect to the basic reasoning mechanisms, the model uses a "hybrid" problem solving

method involving production rules and case-based reasoning. To our knowledge, this second

component has been less explored so far despite the central role that a long-term memory seems

to play in jazz learning process (Ramalho & Ganascia 94b). In this perspective, we introduce

the notion of Musical Memory (case base) which accumulates bass player's experience acquired

by musicians in terms of fragments (melodic and rhythmic patterns) of actual jazz performance

transcriptions. Since PACTs provide us with a flexible knowledge representation framework,

they constitute the building block of our model, unifying the representation of both note-level

cases of the Musical Memory and multiple-level facets (e.g. syncopation, consonance or pitch

contour) manipulated by the rules.

PACTs stored in the Musical Memory are fully specialized, i.e. have all or almost all facets (or

attributes) specified. However, PACTs activated during the improvisation process are often

under specialized. It is by their assembly that we can instantiate the notes to be played. Indeed,

a basic property of PACTs is that they may be combined into more “playable” PACTs

according to their mutual compatibility. For instance, the PACT “Play ascending notes” may

combine with “play chromatic” to yield “play ascending chromatic scale”. This ability to

combine is at the heart of the inference cycle. Firstly, PACTs are activated by means of

production rules according to the latest scenario events, the chords of the current grid segment

and the bass line played so far. Then, the previously activated PACTs overlapping such

segment are selected. Finally, all these PACTs are assembled into a single playable PACT by

the successive application of conflict resolution and combination operators. When two PACTs

are combined, their non conflicting information is added into a new PACT and this new

information is propagated, by means of demons (Minsky 75), so as to compute values of other

attributes (facets). This propagation is concretely implemented through both production rules

and cases reuse. Since we have about 20 facets, it is too complex to take all of them into

account to compute notes by using production rules. Rules are rather used for simple

computations such as « if rhythmicStyle is based on the eight note and dissonance is low then

assign true to repeatedNotes ». More complicated computations (e.g. melodicPattern and

rhythmicPattern) are mainly implemented by a search in the Musical Memory for a case having

the similar characteristics of the current PACT (e.g. similar values of rhythmicStyle,

syncopation and density).

4.2. Reusing MusES

In this section we will describe how MusES objects are used as a basic knowledge

representation layer in the improvisation system. Some basic classes, such as PitchClass,

OctaveDependentNote, Chord, PlayableNote, Scale, MonophonicMelody are

used directly by the inference mechanisms. However, in complex applications, we need quite

often to add some new classes. We will discuss how we take advantage of class inheritance to

easily add new classes. The ImPact system represents a substantial application containing 136

Pachet et al. Representing temporal musical objects in the MusES system, Journal of New Music Research, 25:3, 252-75 1996

classes and 2600 methods in addition to the classes and methods of MusES and the harmonic

analysis systems. ImPact also has 54 production rules and 270 cases.

TemporalObject ('lapse')
 ChordChunk ('shape' 'tonalities' 'resolution' 'chords''section' 'rhythmicStructure'

 'chordGrid' 'positionInForm')
 Edge ('initialValue' 'finalValue' 'slope' 'b')

 Pact ('creationDate' 'playability')

 RhythmNote ()
 ScenarioEvent ()

 BasicOtherMusicianEvent ('musician' 'value' 'variation' 'type')

 DynamicsEvent ()
 HarmonicEvent ()

 RhythmicEvent ()
 AudienceEvent ()
 PassingObjectEvent ('object' 'direction')
 SomeoneSaysEvent ('someone' 'says')
 FineGrainedOtherMusicianEvent ('motive')
 TonalitySpan ('scale')

Figure 9. The hierarchy of temporal objects specific to the improvisation system.

4.2.1. New Temporal Objects

Figure 9 shows some classes added under TemporalObject. For sake of readability the

hierarchy of PACTs is sketched separately in Figure 10. These new classes take full advantage

of the fact that MusES temporal objects know their own lapse. In fact, we deal with temporal

objects that may be much more complex than notes and that are not necessarily grouped

according to the "monophonic and no gap" constraints of melodies, i.e. there is only one note

or rest per moment and this note or rest is immediately followed by another one until the

melody finishes. For instance, there are gaps between the scenario (symbolic) events since no

guarantee exists that a scenario event will occur just after the last one.

Pact ('creationDate' 'playability')

 BackgroundPact ('type')
 ToBeContextualizedPact ('relativeValue' 'relativeValueVariation')
 ToBeDiscretizedPact ('absoluteValueVariation')

 DeclarativePact ()
 ComplexPact ('futureExpectations')
 ComposedPact ('pitchPact' 'rhythmPact' 'amplitudePact'

 'rhythmAndPitchPact' 'melodicPattern')
 SimplePact ('hostPact')

 OneDPact ()
 AmplitudePact ('loudness' 'amplitudeContour' 'envelope')

 PitchPact ('pitchContour' 'tessitura' 'scale' 'dissonance')
 RhythmPact ('syncopation' 'density' 'rhythmStyle' 'rhythmicPattern')

 RhythmAndPitchPact ('leadingTone' 'inversion' 'lineStyle' ‘classicness’ ‘drop’
 'pullDown' 'rpSequence')

 ProceduralPact ()
 RepetitivePact ('sourcePact' 'repetition')
 TransformingPact ('playablePact' 'transformation')

Figure 10. The hierarchy of PACTs in the improvisation system.

PACTs are typical examples of objects that make extensive use of the properties defined in

TemporalObject. A PACT can be activated to last two beats, one measure, one section or

an infinite duration. Diversified types of time intersection may thus be found among the

Pachet et al. Representing temporal musical objects in the MusES system, Journal of New Music Research, 25:3, 252-75 1996

PACTs. In fact, the type of time intersections plays a central role in the production rules that

deal with PACTs conflict resolution and combination. For instance, if two PACTs do not

intersect, then they are compatible, regardless of their contents. When two PACTs (e.g. "play

loud" and "play quiet and consonant") are locally incompatible (within a given chord grid

segment) they may be considered globally incompatible whether the former is-during or

finishes the latter.

Another example concerns the PACTs preference criteria used to choose between two

incompatible PACTs. When the playability criterion is not sufficient to indicate which of two

PACT is to be preferred, then the next criterion is their lapse and creation date. This strategy

amounts to preferring the youngest and longest PACTs.

4.2.2. New temporal collection wrappers

As explained in section 2.4, we can introduce new temporal collection wrappers simply by

defining subclasses of TemporalCollectionWrapper. Using this technique we defined

easily new temporal collection wrappers such as: Scenario that contains scenario events,

WorkingMemory that contains all kinds of activated PACTs, Envelope that contains

temporal edges, MusicalMemory that contains specialized PACTs, and so on.

Two particularly interesting temporal collection wrappers are RhythmicPattern and

MelodicPattern, both subclasses of TemporalCollectionWrapper.

RhythmicPattern represents a rhythmical squeleton, with no specified pitch, and contains

specific knowledge pertaining to improvised musical rhythms, such as transitions, computations

of subjective facets (density, syncopation). MelodicPattern is the melodic equivalent of

RhythmicPattern.

On the contrary to what was initially provided by MusES in MonophonicMelody, we

needed to explicit rests (MusicalSilence) in melodies. This necessity of explicit silence is

raised by the nature of the knowledge handled by rules used during PACTs combination. Since

PACTs are often partially specialized, the absence of notes in the assembly context means

"ignorance" rather than actual rests. The rests are intentionally inserted in

RhythmicPattern or MelodicPattern as a consequence of a reasoning process that

actually occurred and not as an absence of it.

We also introduced for RhythmicPattern the notion of RhythmNote, i.e. a note without

pitch (figure 9). As discussed later in this section, it would be difficult to deal with concepts

such as syncopation or density without reifying the notions of note with no pitch and rest.

Despite the differences between RhythmicPattern, MelodicPattern and

MonophonicMelody, no significant effort was needed to introduce silences and rhythm

notes since kernel class TemporalCollection can manage any sort of temporal object.

4.3. Reasoning on temporal and non-temporal objects: an example

The duality between temporal and non-temporal objects is exploited from the reasoning

perspective in many opportunities by the improvisation system. Let us give an example to stress

how the system takes advantage of the separation between temporal objects and non-temporal

ones in the computation of notes in the context of PACTs combination.

As we said, when two PACTs are combined, their non conflicting information is added into a

new PACT. For instance, let us consider two RhythmPact during 4 beats: "play with rhythm

style = 4-beat (notes' duration is quarter-based)" and "play with medium syncopation and high

density". These two PACTs could be combined into a new one, triggering a demon which

computes the rhythmic pattern. Let us suppose that the resulting rhythmic pattern is in this case

Pachet et al. Representing temporal musical objects in the MusES system, Journal of New Music Research, 25:3, 252-75 1996

"quarter quarter quarter eighth eighth". For this computation only temporal "no pitch objects"

such as RhythmNote and MusicalSilence are manipulated. This task involves

knowledge concerning mainly rhythm features (such as tempo, syncopation, density, rhythm

style, phrase duration) as well as rhythm & pitch features such as pullDown.

The resulting RhythmPact could be combined with other PACTs to generate a

ComposedPact that has enough information to assign pitches to the rhythmic pattern just

computed. Let us suppose that the lineStyle attribute of this ComposedPact is "arpeggio"

(chord-based). The process of generating the sequence of PlayableNote is four-step.

Firstly, taking into account the rhythmic pattern description, we determine that the arpeggio is

4-note based. Then, we calculate these four pitches manipulating only non-temporal objects

(Chord, OctaveDependentNote and so on). This task takes into account knowledge

concerning the following features: 'leadingTone', 'inversion', 'lineStyle', 'pullDown',

'pitchContour', 'tessitura', 'scale' and 'dissonance'. Next, the playable notes are generated through

assigning the computed pitches to the four rhythm notes whose onset correspond to the beats 1,

2, 3 and 4. Last, for the remaining rhythm notes, pitches are calculated as passing notes and the

note sequence is thus completed.

5. Conclusion

We described a framework for representing temporal objects and reasoning in the context of

tonal music. The framework is based on a temporal ontology organized around three basic

classes, and extended using the two main mechanisms of object-oriented programming: class

inheritance and delegation. The claim that the resulting framework is use-neutral is backed up

by examples of sophisticated temporal objects taken from two substantial musical knowledge-

based systems. Other musical applications are in progress (automatic harmonization, pattern

induction), which make full use of the temporal kernel described here, thereby validating our

initial design choices.

References

Allen J.F. (1983) Maintaining Knowledge About Temporal intervals, Communications of the

ACM, 16 (11), pp. 832-843.

Allen J.F. (1984) Towards a general theory of action and time, Artificial Intelligence, vol. 23,

pp. 123-154.

Ames, C. & Domino, M. (1992). Cybernetic Composer: an overview, In M. Balaban, Ebicioglu

K. & Laske, O. eds., Understanding Music with AI: Perspectives on Music Cognition, The

AAAI Press, California.

Carrive, J. (1995). Analyses de grilles de Jazz dans le système MusES. Master thesis, Laforia-

IBP, university of Paris 6, Sept. 1995.

Cointe, P. Rodet, X. (1991) Formes: Composition and Scheduling of Process. In The Well-

Tempered Object: Musical Applications of Object-Oriented Software Technology , S. T.

Pope, ed. MIT Press, pp. 64-82.

Coker, J (1964). Improvising Jazz. Simon & Schuster : New York.

Fake, (1983) The World's Greatest Fake book. ed. C. Sher., San Franscisco: Sher Music Co.

Fake, (1991) The New Real Book. ed. C. Sher. Vol. 2., Petaluma: Sher Music Co.

Foote, B & Johnson, R (1989), Reflective facilities in Smalltalk-80. Proceedings of

OOPSLA'89, pp. 327-336, New Orleans, Louisiana.

Holland, S. (1994). Learning About Harmony Space: An Overview. M. Smith, A. Smaill & G.

Wiggins Eds, Music Education: an Artificial Intelligence Perspective, Springer-Verlag,

London, pp. 24-40.

Johnson-Laird, P. (1991). Jazz improvization: a theory at the computational level. In P. Howell,

R. West, and I. Cross (eds.). Representing Musical Structure. London: Academic Press, pp.

291-325.

Pachet et al. Representing temporal musical objects in the MusES system, Journal of New Music Research, 25:3, 252-75 1996

Kowalski R.A. & Sergot M.J. (1986). A logic-based calculus of events, New Generation

Computing, vol. 4, pp. 67-95.

Levinson, R. & Wescott, C. (1993) Experienced-Based Music Composition, in Proceedings of

AAAI Spring Symposium Workshop on Artificial Intelligence & Creativity. Melon Park: The

AAAI Press, pp. 119-125.

Lieberman, H (1986), Using Prototypical Objects to Implement Shared Behavior in Object-

Oriented Systems. Proceedings of OOPSLA '86, Portland, Oregon, pp. 214-223.

Maxwell, H.J. (1992) An Expert System for Harmonizing Analysis of Tonal Music, in

Understanding Music with AI: Perspectives on Music Cognition, K.Ebcioglu, O.Laske and

M. Balaban, Editors, AAAI Press: p. 335-353.

McDermott D. (1982) A temporal logic for reasoning about processes and plans, Cognitive

science, vol. 6, pp. 101-155.

Minsky, M. (1975). A Framework for Representing Knowledge, in. P. Winston (ed.), The

Psychology of Computer Vision, New York: McGrawHill, pp. 211-277.

Mouton, R. Pachet, F. (1995) Numeric versus symbolic controversy in automatic analysis of

tonal music. IJCAI'95 Workshop on Music and Artificial Intelligence, Montréal (Ca), August

1995, pp. 32-40.

Pachet, F. (1991) A meta-level architecture for analyzing jazz chord sequences. International

Conference on Computer Music, pp. 266-269, Montréal, Canada.

Pachet, F. (1991b) Representing Knowledge Used by Jazz Musicians. International Conference

on Computer Music, pp. 285-288, Montréal, Canada.

Pachet, F. (1994) The MusES system : an environment for experimenting with knowledge

representation techniques in tonal harmony, in Proceedings First Brazilian symposium on

computer music - SBC&M '94, Caxambu, Minas Gerais, Brazil, pp. 195-201.

Pachet, F. (1994b). An object-oriented representation of pitch-classes, intervals, scales and

chords. Premières Journées d’Informatique Musicale, Bordeaux (France), March 1994, pp.

19-34.

Pachet, F. & Roy, P. (1994). Mixing constraints and objects: a case study in automatic

harmonization. Proceedings of TOOLS Europe '95, Versailles (France), Prentice-Hall, pp.

119-126.

Pachet, F. Carrive, J. Dojat, M. (1996) Representation of Circular Time. Submitted to

Computers in Biology and Medicine.

Pope, S. (1991). Introduction to MODE: The Musical Object Development Environment. In

The Well-Tempered Object: Musical Applications of Object-Oriented Software Technology,

S. T. Pope, ed. MIT Press, pp. 83-106.

Ramalho, G., Pachet, F. (1994). From real book to real jazz performance. International

Conference on Music Perception and Cognition, Lièges, Belgium, july 1994, pp. 349-350.

Ramalho, G., Ganascia, J.-G. (1994). Simulating Creativity in Jazz Performance. Proceedings

of 12th AAAI conf. Seattle, pp. 108-113.

Ramalho, G., Ganascia, J.-G. (1994b). The Role of Musical Memory in Creativity and

Learning: a Study of Jazz Performance, In M. Smith, Smaill A. & Wiggins G. eds., Music

Education: an Artificial Intelligence Perspective, Springer-Verlag, London, pp. 143-156.

Real (1981) The Real Book., The Real Book Press.

Roads, C. (1988) Grammars as Representations for Music, in Foundations of Computer Music,

C. Roads and J. Strawn, Editor., MIT Press: pp. 403-442.

Rolland, P.Y., Ganascia, J.G. (1996). Automated Motive Oriented Analysis of Musical

Corpuses: a Jazz Case Study. 20th International Computer Music Conference (ICMC'96),

Honk Kong.

Scaletti, C. (1987). Kyma: An Object-oriented Language for Music Composition. in

Proceedings of the International Computer Music Conference. International Computer Music

Association, San Francisco.

Slade, S. (1991). Case-Based Reasoning: a Research Paradigm, AI Magazine, Spring, 42-55.

Smoliar, S.W. (1980) A Computer Aid for Schenkerian Analysis. Computer Music Journal 4

(2), pp. 41-59.

Pachet et al. Representing temporal musical objects in the MusES system, Journal of New Music Research, 25:3, 252-75 1996

Steedman, (1984) M.J., A Generative Grammar for Jazz Chord Sequences. Music Perception.

2 (1), pp. 52-77.

Steels, L. (1979) Reasoning modeled as a Society of Communicating Experts, MIT AI Lab., n.

AI-TR-542.

Sundberg, J. & Lindblom, B. (1993) Generative Theories in Language and Music Descriptions.

in S. Schwanauer & D. Levitt (eds). Machine Models of Music. Massachusetts: The MIT

Press, pp. 263-286.

Tsang E.P. (1987) Times structures for Artificial Intelligence, in Proceedings 10th IJCAI, pp.

456-461.

Ulrich W, (1977) The Analysis and Synthesis of Jazz by Computer, in Proceedings Fifth

International Joint Conference on Artificial Intelligence, MIT, Cambridge, Ma, pp. 865-872.

Walker, W., Hebel, K., Martirano, S., Scaletti, C. (1992). ImprovisationBuilder: improvisation

as conversation, Proceedings of ICMC, 1992.

Winograd, T. (1968) Linguistic and Computer Analysis of Tonal Harmony, Journal of Music

Theory, 12, pp. 2-49. Reprinted in Machines Models of Music, S.M. Schwanauer and D.A.

Levitt, Editor. 1993, MIT Press: p. 113-153.

