
First International Conference on Virtual Worlds, Springer Verlag Lecture Notes in
Computer Science 1434, pp. 298-307, 1998.

A Mixed 2D/3D Inter face for Music Spatialization

François Pachet1, Olivier Delerue1

1 SONY CSL Paris, 6, rue Amyot, 75005 Paris, France
Email: pachet{ delerue} @csl.sony.fr

Abstr act. We propose a system for controlling in real time the localisation of
sound sources. The system, called MidiSpace, is a real time spatializer of Midi
music. We raise the issue of which interface is the most adapted for using
MidiSpace. Two interfaces are proposed: a 2D interface for controlling the
position of sound sources with a global view of the musical setup, and a
3D/VRML interface for moving the listener’ s avatar. We report on the design of
these interfaces and their respective advantages, and conclude on the need for a
mixed interface for spatialization.

Active L istening

We believe that listening environments of the future can be greatly enhanced by
integrating relevant models of musical perception into musical listening devices,
provided we can develop appropriate software technology to exploit them. This is the
basis of the research conducted on “ Active listening” at Sony Computer Science
Laboratory, Paris. Active Listening refers to the idea that listeners can be given some
degree of control on the music they listen to, that give the possibility of proposing
different musical perceptions on a piece of music, by opposition to traditional
listening, in which the musical media is played passively by some neutral device. The
objective is both to increase the musical comfort of listeners, and, when possible, to
provide listeners with smoother paths to new music (music they do not know, or do not
like). These control parameters create implicitly control spaces in which musical
pieces can be listened to in various ways. Active listening is thus related to the notion
of Open Form in composition [8] but differs by two aspects: 1) we seek to create
listening environments for existing music repertoires, rather than creating
environments for composition or free musical exploration (such as PatchWork [11],
OpenMusic [2], or CommonMusic [18]), and 2) we aim at creating environments in
which the variations always preserve the original semantics of the music, at least when
this semantics can be defined precisely.

The first parameter which comes to mind when thinking about user control on
music is the spatialization of sound sources. In this paper we study the implications of
giving users the possibility to change dynamically the mixing of sound sources. In te
next section, we review previous approaches in computer-controlled sound

First International Conference on Virtual Worlds, Springer Verlag Lecture Notes in
Computer Science 1434, pp. 298-307, 1998.

spatialization, and then propose a basic environment for controlling music
spatialization, called MidiSpace. We then describe a simple 2D interface for
controlling sound sources, and then describe a VRML interface which gives users a
more realistic view on the music heard. We compare the two approaches and argue in
favor of a mixed solution integrating both interfaces. The last section describes the
overall design and implementation of the resulting system.

Music Spatialization

Music spatialization has long been an intensive object of study in computer music
research. Most of the work so far has concentrated in building software systems that
simulate acoustic environments for existing sound signals. These works are based on
results in psychoacoustics that allow to model the perception of sound sources by the
human hear using a limited number of perceptive parameters [4]. These models have
led to techniques allowing to recreate impression of sound localization using a limited
number of loudspeakers. These techniques typically exploit differences of amplitude in
sound channels, delays between sound channels to account for interaural distances, and
sound filtering techniques such as reverberation to recreate impressions of distance and
of spatial volume.

For instance, The Spatialisateur IRCAM [10] is a virtual acoustic processor that
allows to define the sound scene as a set of perceptive factors such as azimuth,
elevation and orientation angles of sound sources relatively to the listener. This
processor can adapt itself to any sound reproduction configuration, such as
headphones, pairs of loudspeakers, or collections of loudspeaker. Other commercial
systems with similar features have recently been introduced on the market, such as
Roland RSS, the Spatializer (Spatializer Audio Labs) which allows to produce a stereo
3D signal from an 8-track input signal controlled by joysticks, or Q-Sound labs’ s Q-
Sound, which builds extended stereophonic image using similar techniques. This
tendency to propose integrated technology to produce 3D sound is further reflected, for
instance, by Microsoft’ s DirectX API now integrating 3D audio.

These sound spatialization techniques and systems are mostly used for building
various virtual reality environments, such as the Cave [5] or CyberStage [6], [8].
Recently, sound spatialization has also been included in limited ways in various 3D
environments such as Community Place’ s implementation of VRML [12], ET++ [1],
or proprietary, low-cost infrastructures [3].

Based on these works, we are interested in exploiting spatialization capabilities for
building richer listening environments. In this paper, we concentrate on the interface
issue, i.e. how to give average listeners the possibility of exploiting sound source
spatialization in a natural, easy way. We will first describe our basic spatialization
system MidiSpace, which precisely allows user to control in real time the spatialization
of sound sources. Then we describe two interfaces for MidiSpace, and compare their
respective advantages.

First International Conference on Virtual Worlds, Springer Verlag Lecture Notes in
Computer Science 1434, pp. 298-307, 1998.

The Basic MidiSpace System

MidiSpace is a system that gives listeners control on music spatialization. We first
outline the characteristics of midi-based spatialization before describing the system.

M idi-Based Spatialization

MidiSpace is a real time player of Midi files which allows users to control in real time
the localization of sound sources through a graphical interface (extensions to audio are
not discussed in this paper). MidiSpace takes as input arbitrary Midi files [9]. The
basic idea in MidiSpace is to represent graphically sound sources in a virtual space, as
well as an avatar that represents the listener itself. Through an appropriate editor, the
user may either move its avatar around, or move the instruments themselves. The
relative position of sound sources and the listener’s avatar determine the overall
mixing of the music, according to simple geometrical rules illustrated in Fig. 1. The
real time mixing of sound sources is realized by sending Midi volume and panoramic
messages.

listener’s
avatar

sound source

α ρ

Fig. 1. Volume of sound_sourcei = f(distance(graphical-objecti, listener_avatar)). f is a function
mapping distance to Midi volume (from 0 to 127). Stereo position of sound source i =
g(angle(graphical_Objecti, listener_avatar)), where angle is computed relatively to the vertical
segment crossing the listener’s avatar, and g is a function mapping angles to Midi panoramic
positions (0 to 127).

It is important to understand here the role of Midi in this project. On the one hand,
there are strong limitations of using Midi for spatialization per se. In particular, using
Midi panoramic and volume control changes messages for spatializing sounds does not
allow to reach the same level of realism than when using other techniques (delays
between channels, digital signal processing techniques, etc.), since we exploit only
difference in amplitude in sound channels to create spatialization effects. However, this
limitation is not important in our context for two reasons : 1) this Midi-based
technique still allows to achieve a reasonable impression of sound spatialization which
is enough to validate our ideas in user interface and control, and 2) more sophisticated
techniques for spatialization can be added in MidiSpace, independently of its
architecture.

First International Conference on Virtual Worlds, Springer Verlag Lecture Notes in
Computer Science 1434, pp. 298-307, 1998.

We will now describe the interfaces for MidiSpace: first, a 2D interface, which
provides a global view on the musical setting, and allows to move sound sources
around. Then we describe a VRML interface and discuss its relevance for music
listening. We conclude on the interest of a mixed approach.

The 2D Inter face of M idiSpace

In the 2D interface of MidiSpace, each sound source is represented by a graphical
object, as well as the listener’s avatar (see Fig. 2.). The user may basically play a midi
file (with usual tape recorder-like controls), and move objects around. When an object
is moved, the spatializer is called with the new position of the object, and the mixing
of sound sources is recomputed accordingly. Other features allow to mute sound
sources, or select them as “ solo”.

Listener’s avatar

Fig. 2. The 2D Interface of MidiSpace. Here, a tune by Bill Evans (Jazz trio) is being performed

In an initial version, we allowed both sound sources and the avatar to be moved.
However this was confusing for users. Indeed, moving sound sources amounts to
changing the intrinsic mixing of the piece. For instance, moving the piano away will
changes the relationship between the piano sound and the rhythmic part. Moving the
avatar simply amounts to changing the mixing in global way, but respects the
relationships between the sound sources. The effect is quite different since in the
second case the structure of the music is modified.

The interface provides a global view on the musical setup, which is very convenient
to edit the musical setting. However, there is no impression of musical immersion in
the musical piece : the interface is basically a means for editing the piece, not to
explore it.

First International Conference on Virtual Worlds, Springer Verlag Lecture Notes in
Computer Science 1434, pp. 298-307, 1998.

The VRML Inter face for navigating in MidiSpace

Second, we have experimented with interfaces for navigating in the musical space.
Several works addressed the issue of navigating in virtual worlds with spatialized
sounds. The most spectacular are probably the Cave system [5] or CyberStage [8], in
which the user is immersed in a fully-equipped room with surrounding images and
sound. Although the resulting systems are usually very realistic, their cost and
availability are still prohibitive.

Instead, we chose to experiment with affordable, wide-spread technology. A 3D
version of MidiSpace in VRML has been built (see Fig. 3.), in which the VRML code
is automatically generated from the 2D interface and the Midi parser. The idea is to
create a VRML world in which the user may freely navigate using the standard VRML
commands, while listening to the musical piece. Each instrument is represented by a
VRML object, and the spatialization is computed from the user current viewpoint. In
this interface, the only thing the user can do is move around using standard commands;
sound sources cannot be moved.

Fig. 3. MidiSpace/VRML on the Jazz trio, corresponding to the 2D Interface of Fig. 2. On the
left, before entering, on the right, inside the club.

Although the result is more exciting and stimulating for users than the 2D interface,
it is not yet fully satisfying because the interface gives too little information on the
overall configuration of instruments, which is a crucial parameter for spatialization.
When the user gets close to an instrument, she loses the sense of her position in the
musical set up (e.g. the jazz club, see Fig. 3.). Of course, this problem is a general
problem with VRML interfaces, and is not specific to MidiSpace, but in the context of
a listening environment, it is particularly important to provide a visualisation which is
consistent with the music being played. This consistency is difficult to achieve with a
3D virtual interface on a simple screen.

First International Conference on Virtual Worlds, Springer Verlag Lecture Notes in
Computer Science 1434, pp. 298-307, 1998.

The Mixed inter face

Based on experiments with users on the two interfaces, we concluded on the interest of
combining them for obtaining an optimal satisfaction on user control. The 2D interface
is used for editing purposes, i.e. moving sound sources. Moving the avatar is not
possible in this interface. The VRML interface is used for exploration, in a passive
mode, to visualize the musical setting in 3D, and move the avatar around. Moving
objects is not possible.

The communication between the two interfaces is realized through the VRML/Java
communication scheme, and ensures that when the avatar is moved in the VRML
interface, the graphical object of the 2D interface is moved accordingly. The overall
architecture of MidiSpace is illustrated in Fig. 4.

VRML Code

Music input data
(midi files)

Real Time player
User

Audio devices
(synthetizers &
mixing console)

loudspeakers

2D Interface

Parser

VRML Interface

Temporal Objects

sound source movements

avatar movements

Fig. 4. The architecture of MidiSpace User Interaction.

Implementation

The implementation of the MidiSpace Spatializer consists in 1) translating Midi
information into a set of objects within a temporal framework, 2) scheduling these
temporal objects using a real time scheduler, 3) the interfaces.

The Parser

The Parser task is to transform the information contained in the Midi file into a unified
temporal structure. The temporal framework we use is described in [18], an object-
oriented, interval-based representation of temporal objects. In this framework, each

First International Conference on Virtual Worlds, Springer Verlag Lecture Notes in
Computer Science 1434, pp. 298-307, 1998.

temporal object is represented by a class, which inherits the basic functionalities from a
root superclass TemporalObject.

One main issue the Parser must address comes from the way Midi files are
organized according to the General Midi specifications. Mixing is realized by sending
volume and panoramic Midi messages. These messages are global for a given Midi
channel. One must therefore ensure that each instrument appears on a distinct Midi
channel. In practice, this is not always the case, since Midi tracks can contain events on
different channels. The first task is to sort the events and create logical melodies for
each instrument. This is realized by analysing program change messages, which assign
Midi channels to instruments, thereby segmenting the musical structure. The second
task is to create higher level musical structures from the basic musical objects (i.e.
notes). The Midi information is organized into notes, grouped in melodies. Each
melody contains only the notes for a single instrument. The total piece is represented as
a collection of melodies. A dispatch algorithm ensures that, at a given time, only one
instrument is playing on a given Midi channel.

Scheduling temporal objects

The scheduling of MidiSpace objects uses MidiShare [14], a real time Midi operating
system, with a Java API. MidiShare provides the basic functionality to schedule
asynchronously, in real time, Midi events, from Java programs, with 1 millisecond
accuracy. More details on the scheduling are given in [7].

M idiSpace Interfaces

The 2D interface uses the standard Java awt library, and follows a straightforward
object-oriented interface design. The VRML interface is generated automatically from
the Parser. More precisely, the Parser generates a file, which contains basically 1) the
information on the global setup, 2) description of individual sound sources,
corresponding to the various sound tracks identified, and 3) routing expressions to a
spatializer object, which is defined as a Java script, using the VRML/Java
communication scheme [12]. An excerpt of the VRML code is shown in Fig. 5.

Wor l dI nf o { t i t l e " Tr i o j azz" }

Var i ous gl obal set t i ngs
Navi gat i onI nf o { speed 2 t ype [" WALK"] }
The vi ewpoi nt f r om whi ch t he spat i al i zat i on i s comput ed
DEF USERVI EWPOI NT Vi ewpoi nt { posi t i on - 13 0 45}

The def i ni t i on of t he musi cal set t i ng (her e, a Jazz
Cl ub)
…

First International Conference on Virtual Worlds, Springer Verlag Lecture Notes in
Computer Science 1434, pp. 298-307, 1998.

t he Label
Tr ansf or m {
 t r ansl at i on - 2 4. 7 21
 chi l dr en [
 Shape {
 appear ance Appear ance {
 mat er i al Mat er i al {
 di f f useCol or 1 1 1} }
 geomet r y Text {
 s t r i ng " Jazz Cl ub" } }] }

The sound sour ces, as i dent i f i ed by t he Par ser i n
Gener al Mi di
DEF PI ANO Tr ansf or m {
 chi l dr en [
 Shape {
 appear ance Appear ance {
 t ext ur e I mageText ur e {
 ur l " pi ano. j pg"
 r epeat S FALSE
 r epeat T FALSE}
 t ext ur eTr ansf or m Text ur eTr ansf or m { }
 }
 geomet r y Box {
 s i ze 3 3 3} }] }

DEF DRUMS Tr ansf or m { …}
DEF BASS Tr ansf or m { …}

The Java scr i pt f or handl i ng movement s and
spat i al i zat i on
DEF MY_SCRI PT Scr i pt {
 ur l " Musi cScr i pt . c l ass"
 f i el d SFSt r i ng mi di Fi l eName
" ht t p: / / i nt web. csl . sony. f r / ~demo/ t r i o. mi d"
 f i el d SFNode channel 10 USE DRUMS
 f i el d SFNode channel 2 USE BASS
 f i el d SFNode channel 3 USE PI ANO
 event I n SFVec3f posChanged
 event I n SFRot at i on or i ent at i on
 event Out SFRot at i on keepRi ght
 event Out SFVec3f keepPosi t i on}

“ The r out i ng of VRML messages t o t he Java scr i pt

First International Conference on Virtual Worlds, Springer Verlag Lecture Notes in
Computer Science 1434, pp. 298-307, 1998.

ROUTE DETECTOR. posi t i on_changed TO MY_SCRI PT. posChanged
ROUTE MY_SCRI PT. keepPosi t i on TO
USERVI EWPOI NT. set _posi t i on
ROUTE DETECTOR. or i ent at i on_changed TO
MY_SCRI PT. or i ent at i on
ROUTE MY_SCRI PT. keepRi ght TO
USERVI EWPOI NT. set _or i ent at i on

Fig. 5. The generated VRML code for describing the musical setting from a given midi
file

Conclusion, Future works

The MidiSpace system shows that it is possible to give some degree of freedom to
users in sound spatialization, through an intuitive graphical interface. We argue that a
unique interface is not appropriate for both moving sound sources and avatars, while
giving users a realistic feeling of immersion. In the case of spatialization, although they
appear at first to be similar user actions, moving sound sources and moving the avatar
bear significantly different semantics, and we concluded that allowing these two
operations in the same interface is confusing. We propose an approach combining a
standard 2D interface, appropriate for moving sound sources and editing the setup, and
a VRML interface appropriate for moving avatars and exploring the musical piece. The
prototype built so far validates our approach, and more systematic testing with users is
in progress.

Future work remains to be done in three main directions. First we are currently
adding a constraint-based mechanism for maintaining consistency in sound source
positions [15]. This mechanism allows users to navigate in a restricted space, which
will always ensure that some mixing properties of the music are satisfied. Second, an
audio version of MidiSpace is in progress, to 1) enlarge the repertoire of available
music material to virtually all recorded music, and 2) improve the quality of the
spatialization, using more advanced techniques such as the ones sketched in the
introduction of this paper. Finally, an annotation format is currently being designed to
represent information on the content of musical piece, to enrich the interaction. These
annotations typically represent information on the structure of the piece, its harmonic
characteristics, and other kinds of temporal information [17]. These extensions are in
progress, and remain compatible with our choice for user interface design proposed
here.

References

1. Ackermann P., Developing object-oriented multimedia software, Dpunkt, Heidelberg, 1996.

First International Conference on Virtual Worlds, Springer Verlag Lecture Notes in
Computer Science 1434, pp. 298-307, 1998.

2. Assayag G., Agon C., Fineberg, J., Hanappe P., “ An Object Oriented Visual Environment For
Musical Composition” , Proceedings of the International Computer Music Conference, pp.
364-367, Thessaloniki, 1997.

3. Burgess D.A., “Techniques for low-cost spatial audio” , ACM Fifth Annual Symposium on
User Interface Software and Technology (UIST '92), Monterey, November 1992.

4. Chowning, J. (1971), “ The simulation of moving sound sources”, JAES, vol. 19, n. 1, p. 2-6.
5. Cruz-Neira, C., Leight, J., Papka, M., Barnes, C., Cohen, S.M., Das, S., Engelmann, R.,

Hudson, R., Roy, T., Siegel, L., Vasilakis, C., DeFanti, T.A., Sandin, D.J., “Scientists in
Wonderland: A Report on Visualization Applications in the CAVE Virtual Reality
Environment” , Proc. IEEE Symposium on Research Frontiers in VR, pp. 59-66, 1993.

6. Dai P., Eckel G., Göbel M., Hasenbrink F., Lalioti V., Lechner U., Strassner J., Tramberend
H., Wesche G., “Virtual Spaces: VR Projection System Technologies and Applications” ,
Tutorial Notes, Eurographics '97, Budapest 1997, 75 pages.

7. Delerue O., Pachet F., “MidiSpace, un spatialisateur Midi temps réel” , Cinquièmes Journées
d’ Informatique Musicale, Toulon, 1998.

8. Eckel G., “Exploring Musical Space by Means of Virtual Architecture” , Proceedings of the
8th International Symposium on Electronic Art, School of the Art Institute of Chicago, 1997.

9. IMA, “MIDI musical instrument digital interface specification 1.0” , Los Angeles,
International MIDI Association, 1983.

10. Jot J.-M., Warusfel O. “A Real-Time Spatial Sound Processor for Music and Virtual Reality
Applications” , Proceedings of International Computer Music Conference, September 1995.

11. Laurson M., Duthen J., “PatchWork, a graphical language in PreForm”, Proceedings of the
International Computer Music Conference, San Francisco,172-175, 1989.

12. Lea R., Matsuda K., Myashita K., Java for 3D and VRML worlds, New Riders Publishing,
1996.

13. Meyer L., Emotions and meaning in music, University of Chicago Press, 1956.
14. Orlarey Y., Lequay H. “MidiShare: a real time multi-tasks software module for Midi

applications” , Proceedings of the ICMC, 1989, ICMA, San Francisco.
15. Pachet, F. Delerue, O. A Temporal Constraint-Based Music Spatialization system,

submitted to ACM MultiMedia 98, 1998.
16. Pachet F., Ramalho G., Carrive J. “Representing temporal musical objects and reasoning in

the MusES system”, Journal of New Music Research, vol. 25, n. 3, pp. 252-275, 1996.
17. Pachet, F. Delerue, O. “Annotations for Real Time Music Spatialization”, International

Workshop on knowledge Representation for interactive Multimedia Systems, KRIMS-II
workshop, Trento, Italy, 1998.

18. Taube H., “Common Music: A Music Composition Language in Common Lisp and CLOS” ,
Computer Music Journal, vol. 15, n° 2, 21-32, 1991.

