
MusicSpace: a Constraint-Based Control System for Music Spatialization, Proc. of ICMC 1999

���������	
����
������������	���
���
������	���
��������

������������
�

��������	������
	���
���	����	
�	
����	���	�����
	�
	���	�����	�����
	�����
	������	

 ��!	"##$	%	&&	�'	��	%�
	��(!	"##$	%	&�	'�	'�	��
	�)����!	*�+,��-+��.����./�

Abstract
Common graphical interfaces for 3D sound spatialization systems are usually based on a direct mapping of sound sources
to icons. The result is that only one sound source can be moved at a time by the user. To make these interfaces more
useable, we introduce constraints, as relations between sound sources which should always be satisfied. These constraints
are enforced by a constraint solver which operates in real time. We illustrate the system - MusicSpace - on a number of
situations like listening, mixing and composing.

1. Music Spatialization

Music spatialization has long been an intensive object of
study in computer music research. Most of the work so far
has concentrated in building software to simulate acoustic
environments for existing sound signals. These techniques
typically exploit difference of amplitude in sound
channels, delays between sound channels to account for
interaural distances, and sound filtering techniques such as
reverberation to recreate impressions of distance (e.g. [4]).
These spatialization techniques are mostly used for
building virtual reality environments, such as [2], [5].
However, letting users change spatialization arbitrarily
induces the risk that the original properties of the
configuration of sound sources are no longer preserved.
We propose a system in which user may change the
positions of sound sources, while ensuring that
spatializations are always “ correct” in some precisely
defined sense.

2. MusicSpace

MusicSpace is not a spatialization system per se, but
rather an interface for producing high level commands to a
spatializer. The basic idea in MusicSpace is to represent
graphically sound sources in a window, as well as an
avatar that represents the listener itself. In this window,
the user may either move its avatar around, or move the
instruments icons. The relative position of sound sources
to the listener’s avatar determine the overall mixing of the
music, according to simple geometrical rules mapping
distances to volume and panoramic controls (see Figure
1). The real time mixing of sound sources is then
performed by sending appropriate commands from
MusicSpace, to whatever spatialization system is
connected to it, such as a mixing console, a Midi
Spatializer, or a more sophisticated spatialization system
such as [4].

listener’s
avatar

sound source

α ρ

Figur e 1. Volume of sound_sourcei = f(distance(graphical-
objecti, listener _avatar)). f is a function mapping distance to
Midi volume (fr om 0 to 127). Ster eo position of sound sour ce
i = g(angle(gr aphical_Objecti, listener_avatar)), where angle

is computed relatively to the ver tical segment crossing the
listener ’s avatar , and g is a function mapping angles to M idi

panor amic positions (0 to 127).

In this context, MusicSpace is seen as a command
generator for an arbitrary spatialization system (see Figure
2).

A spatialization
system

a set of commands = parameter values

n sound streams
a spatialized
sound stream
(e.g. a stereo signal)

Figure 2. A spatializer module.

3. Mixing Consistency

The problem with allowing users to change the
configuration of sound sources, and hence, the mixing, is
that they do not have the knowledge required to produce
coherent, nice-sounding mixings. Indeed, the knowledge
of the sound engineer is difficult to explicit and to
represent. Its basic actions are actions on controls such as
faders and knobs. However, mixing also involves higher
level actions that can be defined as compositions of
atomic actions. For instance, sound engineers may want to
ensure that the overall energy level of the recording
always lies between reasonable boundaries. Conversely,
several sound sources may be logically dependent. For
instance, the rhythm section may consist in the bass track,

MusicSpace: a Constraint-Based Control System for Music Spatialization, Proc. of ICMC 1999

the guitar track and the drum track. Another typical
mixing action is to assign boundaries to instruments or
groups of instruments so that they always remain within a
given spatial range. The consequence of these actions is
that sound levels are not set independently of each
another. Typically, when a fader is raised, another one, (or
a group of other faders) will be lowered.
We propose to encode this type of knowledge on sound
spatialization as constraints, which are interpreted in real
time by an efficient constraint propagation algorithm,
integrated in MusicSpace.

3.1 Constraints for Interactive Systems

Constraints are relations that should always be satisfied.
Constraints are stated declaratively by the designer,
thereby avoiding him to program complex algorithms.
Constraint propagation algorithms are particularly relevant
for building reactive systems typically for layout
management of graphical interfaces [3].

3.2 Constraints and Mixing Consistency

We defined a set of constraints appropriate for specifying
“ interesting” relations between sound sources. Each sound
source is represented by a point, i.e. two integer variables
(one for each coordinate): pi = {xi, yi } with xi, yi ∈ [1,
1000] (a typical screen). An additional variable l
represents the position of the listener’ s avatar, itself
consisting of two integer variables: l = {xl, yl } with xl, yl
∈ [1, 1000].

Most of the constraints on mixing involve a collection of
sound sources and the listener. We describe here the most
useful ones.
• Constant Energy Level
This constraint states that the energy level between several
sound sources should be kept constant. According to our
model of sound mixing, this constraint can be stated
between variables pi, i = 1, .., n as follows:

p l Ctei
i

n

− =
=

∏
1

. Intuitively, it means that when one source

is moved toward the listener, the other sources should be
“pushed away”, and vice-versa. The constant value on the
right-hand side of the constraint is determined by the
current values of pi and l when the constraint is set.

Note that this constraint is non linear, and not functional
(except in the case of two sources).
• Constant Angular Offset
This constraint is the angular equivalent of the preceding
one. It expresses that the spatial configuration of sound
sources should be preserved, i.e. that the angle between
two objects and the listener should remain constant. It can
be stated between variables p1 and p2 as:
(, ∃,)p l p Cte1 2 = . It is easily generalized to a collection of

objects p1,…, pi…,pn.
• Constant Distance Ratio
The constraint states that two or more objects should
remain in a constant distance ratio to the listener:

p l p l1 1 2 2− = −α ,

• Radial Limits of Sound Sources
This constraint allows to impose radial limits in the
possible regions of sound sources. These limits are
defined by circles whose center is the listener’s avatar (see
Err eur ! Source du r envoi introuvable.).

p li − ≥ α inf
 (lower limit), p li − ≤ αsup

 (upper limit)

• Grouping constraint
This constraint states that a set of n sound sources should
remain grouped, i.e. that the distances between the objects
should remain constant (independently of the listener’ s
avatar position):

()∀ ≤ − =i j n x x Ctxi j i j, : ,
and()y y Ctyi j i j− = ,

Other typical constraints include symbolic constraints,
holding on non geographical variables. For instance, an
“ Incompatibility constraint” imposes that only one source
should be audible at a time: the closest source only is
heard, the others are muted. Another complex constraint is
the “Equalizing constraint” , which states that the
frequency ratio of the overall mixing should remain within
the range of an equalizer. For instance, the global
frequency spectrum of the sound should be flat.

3.3 Constraint algor ithm

The examples of constraints given above show that the
constraints have the following properties:
• the constraints are not linear. For instance, the constant

energy level (between two or more sources) is not
linear. This prohibits the use of simplex-derived
algorithms.

• The constraints are not all functional. For instance,
geometrical limits of sound sources are typically
inequality constraints.

• The constraints quickly induce cycles. For instance, a
simple configuration with two sources linked by a
constant energy level constraint and a constant angular
offset constraint already yields a cyclic constraint
graph.

There is no general algorithm, to our knowledge, which
handles non linear, non functional constraints with cycles.
We designed a propagation algorithm which implements
only a part of our requirements, but with predictable and
reactive behavior. This algorithm is based on a simple
propagation scheme, and allows to handle functional
constraints, inequality constraints. It handles cycles simply
by checking conflicts. An important property of the
algorithm is that new constraint classes may be added
easily, by defining the set of propagation procedures ([6]).

3.4 The inter face

The interface for setting constraints is straightforward:
each constraint is represented by a button, and constraints
are set by first selecting the graphical objects to be
constrained, and then clicking on the appropriate

MusicSpace: a Constraint-Based Control System for Music Spatialization, Proc. of ICMC 1999

constraint. Constraints themselves are represented by a
small ball linked to the constrained objects by lines.

Figure 3. The M usicSpace inter face for setting constraints.

Figure 3 displays a typical configuration of sound source
for a Jazz trio. The following constraints have been set:
• The bass and drum sound sources are linked by a

“ constant distance ratio” constraint, which ensures that
they remain grouped, distance wise.

• The piano is linked with the rhythm section by a
“ balance” constraint. This ensures that the total level
between the piano and the rhythms section is constant.

• The piano is limited in its movement by a “distance
max” and a “ distance min” constraint. This ensures
that the piano is always heard.

• The drum is forced to remain in an angular area by two
“ angle constraints” . This ensures that the drum is
always more or less in the middle of the panoramic
range.

Starting from the initial situation of Figure 3, the user
moves the piano closer to his avatar. The constraint
system is then triggered, and the other sound sources are
moved to satisfy the constraint set.

4. Applications

The core MusicSpace system consists of a graphical
interface for representing sound sources, and a library of
constraints for establishing relations between sources,
through graphical links (represented as balls of various
colors). This basic system is general enough to be applied
in a number of situations where high level user actions
may be transformed into sets of lower levels parameter
settings. We review here some of the situations where
MusicSpace has been applied successfully.

4.1 Interactive listening

MusicSpace is used primarily as a player for midi files. In
this scheme Sound sources represent tracks of a midifile,
hence instruments. The system parses the midi file,
recognizes its tracks and reorganizes it if necessary so that
each track represents a different instrument. The user can

then set constraints on the instruments (as illustrated in
Figure 3), and play the file, while moving instruments.

4.2 Inter face for mixing console

MusicSpace has been used for controlling various
spatialization systems, such as Ircam’s spat, as well as
mixing consoles, such as the Yamaha O2R. In this last,
scheme, sound sources represents tracks of the console.
Constraints allows to produce mixing in real time, which
are impossible to produce by hand. In the case of Ircam’ s
spat, specific constraints allow to set relations holding on
other parameters than distance and pan, such as directivity
(see Figures 4 and 5).

Figur e 4. MusicSpace controlling tracks 1 to 6 of an O2R
mixing console

Figur e 5. M usicSpace contr olling two modules of the I rcam's
Spatialisateur . Each module can define its own or ientation ;
the way the or ientation evolves depends on its corr esponding

source object and the constraint that is set in between.

4.3 Composition tool

MusicSpace has been used for producing music. In this
case, sound sources represent autonomous musical
processes. These processes are defined using a
composition languages. We conducted two such

MusicSpace: a Constraint-Based Control System for Music Spatialization, Proc. of ICMC 1999

experiments. One with the Lisp-based OpenMusic
language [1]; another one with the Java-based MusES
language. These languages allow to create complex
musical processes, and endow them with spatialization
capabilities in an homogeneous way. For instance, we
show in Figure 6 a patch in OpenMusic that generates a
set of commands for MusicSpace. Connections between
OpenMusic and MusicSpace are established via the Midi
interface.

Figure 6. A patch in OpenMusic deliver ing complex data for
M usicSpace.

Figur e 7. Result in M usicSpace of the evaluation of the patch
descr ibed in Figur e 6.

Figure 7 shows the result of the evaluation of the previous
patch in MusicSpace : a set of musical objects and
constraints arranged according to a fractal algorithm.

5. Future work

MusicSpace provides a high level command language for
moving groups of related sound sources, and may be used

to control arbitrary spatialization systems. MusicSpace
was connected successfully to a Midi Spatialization
system for playing midi files, to a midi-controlled audio
mixing console for mixing multi-track recordings, as well
as to Ircam’ s spatialization system [4].

In fact MusicSpace has applications also outside the field
of spatialization. MusicSpace can be used for any
situation where:
1) Streams of real time data can be controlled by discrete

parameters (e.g. streams of audio sources controlled by
distance, pan, directivity, etc.),

2) Relations between these parameters can be expressed
as constraints or combinations of constraints.

Such situations occur frequently in music composition,
sound synthesis, and real time control. We have sketched
some of them here. Other applications in progress
concerns the automatic animation of sound sources (e.g.
defining sources which revolve automatically around other
sources, or which move through a path itself defined with
constraints).

MusicSpace and related information can be obtained at
http://www.csl.sony.fr/MusicSpace

6. References

[1] Delerue O., Agon C., “Open Music + Music Space =
Open Space”, Proceedings of the Journées
d’ Informatique Musicale JIM 99, Issy-les-
Moulineaux, 1999.

[2] Eckel G., “ Exploring Musical Space by Means of
Virtual Architecture”, Proceedings of the 8th
International Symposium on Electronic Art, School of
the Art Institute of Chicago, 1997.

[3] Hower W., Graf W. H., “ a Bibliographical Survey of
Constraint-Based Approaches to CAD, Graphics,
Layout, Visualization, and related topics”,
Knowledge-Based Systems, Elsevier, vol. 9, n. 7, pp.
449-464, 1996.

[4] Jot J.-M., Warusfel O., “A Real-Time Spatial Sound
Processor for Music and Virtual Reality
Applications” , Proceedings of ICMC, 1995.

[5] Lea R., Matsuda K., Myashita K., Java for 3D and
VRML worlds, New Riders Publishing, 1996.

[6] Pachet F., Delerue O., “A Temporal Constraint-Based
Music Spatializer” , ACM Multimedia Conference,
Bristol, 1998.

