
SRF98-041

MusicSpace: a Constraint-Based Music Spatializer

François Pachet, Olivier Delerue
SONY CSL Paris, 6, rue Amyot 75005, Paris, FRANCE

Tel: (33) 1 44 08 05 16, Fax: (33) 1 45 87 87 50, E-mail: pachet@csl.sony.fr

Abstract

We describe a system in which users may control in real time the position of sound sources. We introduce the

problem of mixing consistency, as the maintenance of good properties of sound source configurations, and

propose a solution based on a constraint propagation mechanism. In the authoring mode, sound engineers may

specify which spatialization constraints should be satisfied. In the listening mode listeners can modify the

position of sources, and the constraint solver ensures the constraints are satisfied.

1. Music Spatialization

We believe that listening environments of the future can

be greatly enhanced by providing users more meaningful

user control. The most straightforward musical control is

probably the spatialization of sound sources.

Music spatialization has long been an intensive object of

study in computer music research. Most of the work so

far has concentrated in building software to simulate

acoustic environments for sound signals. These

techniques typically exploit difference of amplitude in

sound channels, delays between sound channels to

account for interaural distances, and sound filtering

techniques such as reverberation to recreate impressions

of distance (e.g. [6]). These spatialization techniques are

mostly used for building virtual reality environments,

such as [3] or [7]. We propose in this work to exploit

spatialization technologies in a active way, by letting

users change arbitrarily the spatialization of sound

sources. We show that this control induces a risk that

the user creates configurations of sound sources which

are not satisfactory, from the viewpoint of the sound

engineer or composer. We propose a system –

MusicSpace - in which the user may change the positions

of sound sources, while ensuring that resulting

spatializations are always “correct” in some precisely

defined sense.

2. MusicSpace

MusicSpace is not a spatialization system per se, but

rather an interface for issuing high level commands to a

spatializer. The basic idea in MusicSpace is to represent

graphically sound sources in a interface, as well as an

avatar that represents the listener itself. In this window,

the user may either move its avatar around, or move the

instruments. The relative position of sound sources to

the listener’s avatar determine the overall mixing of the

music, according to simple geometrical rules mapping

distances to volume and panoramic controls (see Figure

1). The real time mixing of sound sources is then

performed by sending appropriate commands from

MusicSpace, to whatever spatialization system

connected to it, such as a mixing console, a Midi

Spatializer, or a more sophisticated spatialization system

such as [6].

listener’s
avatar

sound source

 

Figure 1 : Volume of sound_sourcei = f(distance(graphical-objecti,

listener_avatar)). f is a function mapping distance to Midi volume

(from 0 to 127). Stereo position of sound source i =

g(angle(graphical_Objecti, listener_avatar)), where angle is

computed relatively to the vertical segment crossing the listener’s

avatar, and g is a function mapping angles to Midi panoramic

positions.

In this context, MusicSpace is a command generator for

an arbitrary spatialization system (see Figure 2).

A spatialization

system

a set of commands = parameter values

n sound streams
a spatialized

sound stream

(e.g. a stereo signal)

Figure 2 : A Spatializer module

3. Mixing Consistency

The problem with allowing users to change the

configuration of sound sources, and hence, the mixing, is

that they do not have the knowledge required to produce

coherent, nice-sounding mixings. Without any

supervision, users can end up with configurations of

sound sources which are not acceptable in a number of

ways. For instance, by putting related sound sources too

SRF98-041

much apart, or, conversely, by grouping somehow

“incompatible” sources together. Another example is for

instance that some sound sources should always be heard

but should never be to loud and thus should remain in

between some precisely defined boundaries.

Indeed, the knowledge of the sound engineer is difficult

to acquire –it takes years to become a sound engineer -,

and hence to explicit and represent. In our context,

however, we claim that a purely syntactical viewpoint is

enough to address the issue of supervised mixing. The

basic actions of the sound engineer are atomic actions on

controls and parameters such as faders and knobs on the

mixing table. However, mixing also involves higher

level actions that can be defined as compositions of

atomic actions. For instance, sound engineers may want

to ensure that the overall energy level of the recording

always lies between reasonable boundaries. Conversely,

several sound sources may be logically dependent. For

instance, the rhythm section may consist in the bass

track, the guitar track and the drum track. Another

typical mixing action is to assign boundaries to

instruments or groups of instruments so that they always

remain within a given spatial range. The consequence of

these actions is that sound sources are not configured

independently of each another. Typically, when a fader

is raised, another one, (or a group of other faders) will be

lowered.

We propose in this paper to encode this type of

knowledge on sound spatialization as constraints, which

are interpreted in real time by an efficient constraint

propagation algorithm, integrated in MusicSpace.

3.1 Constraints for Interactive Systems

Constraints can be defined as relations that should

always be satisfied. Constraints are interesting because

they are stated declaratively by the programmer, thereby

avoiding him to program complex algorithms. Constraint

propagation algorithms are particularly relevant for

building reactive systems typically for layout

management of graphical interfaces [5].

3.2 Constraints and Mixing Consistency

We defined a set of constraints appropriate for

specifying interesting relations between sound sources.

Each sound source is represented by a point, i.e. two

integer variables (one for each coordinate): pi = {xi, yi }

with xi, yi  [1, 1000] (a typical screen). An additional

variable l represents the position of the listener’s avatar,

itself consisting of two integer variables: l = {xl, yl } with

xl, yl  [1, 1000].

Most of the constraints on mixing involve a collection of

sound sources and the listener. We describe here the

most useful ones.

• Constant Energy Level

This constraint states that the energy level between

several sound sources should be kept constant.

According to our model of sound mixing, this constraint

can be stated between variables pi, i = 1, .., n as follows:

p l Ctei
i

n

− =
=


1

. Intuitively, it means that when one

source is moved toward the listener, the other sources

should be “pushed away”, and vice-versa. The constant

value on the right-hand side of the constraint is

determined by the current values of pi and l when the

constraint is set. Note that this constraint is non linear,

and not functional (except in the case of two sources).

• Constant Angular Offset

This constraint is the angular equivalent of the preceding

one. It expresses that the spatial configuration of sound

sources should be preserved, i.e. that the angle between

two objects and the listener should remain constant. It

can be stated between variables p1 and p2 as:

(, ,)p l p Cte1 2 = . It is easily generalized to a collection

of objects p1,…, pi…,pn.

• Constant Distance Ratio

The constraint states that two or more objects should

remain in a constant distance ratio to the listener:

p l p l1 1 2 2− = − ,

• Radial Limits of Sound Sources

This constraint allows to impose radial limits in the

possible regions of sound sources. These limits are

defined by circles whose center is the listener’s avatar

(see Figure 7).

p li − inf
 (lower limit), p li − sup

 (upper

limit)

• Grouping constraint

This constraint states that a set of n sound sources

should remain grouped, i.e. that the distances between

the objects should remain constant (independently of the

listener’s avatar position):

()  − =i j n x x Ctxi j i j, : ,
and ()y y Ctyi j i j− = ,

Other typical constraints include symbolic constraints,

holding on non geographical variables. For instance, an

“Incompatibility constraint” imposes that only one

source should be audible at a time: the closest source

only is heard, the others are muted. Another complex

constraint is the “Equalizing constraint”, which states

that the frequency ratio of the overall mixing should

remain within the range of an equalizer. For instance, the

global frequency spectrum of the sound should be flat.

3.3 Constraint algorithm

The examples of constraints given above show that the

constraints have the following properties:

• the constraints are not linear. For instance, the

constant energy level (between two or more sources)

is not linear. This prohibits the use of simplex-

derived algorithms.

• The constraints are not all functional. For instance,

geometrical limits of sound sources are typically

inequality constraints.

• The constraints in our context induce cycles. For

instance, a simple configuration with two sources

SRF98-041

linked by a constant energy level constraint and a

constant angular offset constraint yields a cyclic

constraint graph.

There is no general algorithm, to our knowledge, which

handles non linear, non functional constraints with

cycles. Indigo [1] is an algorithm for functional

constraints with inequalities, but does not handle cycles.

Conversely, cycle solvers such as Purple (linear

constraints) and DeepPurple for linear inequalities, do

not handle non linear constraints. The general solution

as proposed in the literature consists in using hybrid

algorithms such as Detail or UltraViolet as mentioned in

section 3.1. However, these algorithms add a

considerable level of complexity: they are difficult to

implement and tune, and may have unexpected behavior

[4].

Instead, we designed a simple propagation algorithm

which implements only a part of our requirements, but

with predictable and reactive behavior [8] . The current

algorithm we use is based on a simple propagation

scheme, and allows to handle functional constraints,

inequality constraints. It handles cycles simply by

checking conflicts. Each variable v is associated to the

set of constraints holding on it (predicate constraints(v)).

Each functional constraint has a set of procedures or

methods, used to compute values of output variables

from values of input variables. The algorithm is

triggered by the modification of one variable, and is

described below:

// Each variable holds a list of constraints, and each

// constraint holds the list of its variables

// The propagation depends on the type of the constraint

propagate (Constraint c, Variable v)

 if c is functional: propagateFunctional(c, v)

 if c is inequality: propagateInequality(c, v)

propagateFunctionalConstraint(Constraint c, Variable v)

 result = true

 for each variable v’ in c. variables, such as v’  v,

 new-value = perform-method (v’, v, v.new-value)

 result = result && perturbate(v’, new-value, c)

 endfor

 return result

// Inequality constraints are just checked

propagateInequalityConstraint(variable v , perturbation v-

perturbation)

 return c.isSatisfied()

// Each variable holds a value (actual current value), and a

// new-value, which represents a perturbation, either triggered

// by the user or computed

perturbate(Variable v, Value new-value, Constraint c)

 result = true

 if v.value  v.new-value // v has already been perturbated

 //perturbation is the same

 return (v.new-value = new-value)

 endif

 v.new-value= new-value

 for each constraint c’ in v.constraints such as c’ != c

 result = result && propagate(c’, v)

 enfor

 return result

Figure 3. Propagation algorithm of MusicSpace

An important property of the algorithm is that new

constraint classes may be added easily, just requiring the

definition of a set of propagation procedures (perform-

method).

3.4 Handles as one-way constraints

There are cases when full-fledged constraints are not

appropriate for the task. For instance, when a sound

source is constrained in two (or more) incompatible

ways, in different contexts.

This situation typically occurs when we need to specify

different usages of sound sources, independent of each

others. For instance, it makes sense to group together all

the sound sources under a single constraints representing

the global volume or “presence” of the piece. In this

case, we would like all the sound sources to be linked by

a constant distance ratio constraint. However, this

constraint should be enforced only when the user wants

to actually modify the global volume/presence of the

whole piece. Similarly, it can be interesting to group

related sound sources (e.g. voice sources) together,

independently of other possible constraints. If we

represent all these requirements as standard, multi way

constraints, these constraints will be mutually

incompatible.

To solve this problem, we introduce the notion of

handle. A handle is an extra object added in the

interface, which represents a particular usage of the

sound sources: for instance, grouping the rhythm section,

grouping the human voices of the piece, or balancing

between the rhythm section and the voicing. When the

piece contains a large number of sound sources, these

handles provide a way of splitting the constraint set in

different, mutually incompatible subsets. Handles are

represented in the interface by green balls that can

possibly be given a name (see Figure 10).

Figure 4: a problematic example

Figure 5: Solving the problem by introducing One-way constraints

SRF98-041

To implement handles, we introduce one-way constraints

in the algorithm. One way constraints can be seen as

constraints which are activated conditionally.

The proposed algorithm makes it easy to integrate so-

called one way constraints: one way constraints are

binary constraints that come between a constraint and

each of its constrained object. According to its state

(object to constraint, or constraint to object) the one way

constraint propagation method will simply transmit or

hide the perturbation.

We introduce the function one-way(constraint,

variable) which yields true if the constraint must

propagate its change to the variable.

In the case One-way constraint to object, the only change

to do in the algorithm of section 3.3 is the following:

propagateFunctionalConstraint(Constraint c, Variable v)

 result = true

 for each variable v’ in c. variables, such as v’  v,

 new-value = perform-method (v’, v, v.new-value)

 if (1-way(c, v’)) “do nothing”

 else result = result && perturbate(v’, new-value, c)

 endfor

 return result

In the case of a perturbation from an object to a one-way

constraint to object, the only change to do is the

following:

perturbate(Variable v, Value new-value, Constraint c)

 result = true

 if v.value  v.new-value // v has already been perturbated

 //perturbation is the same

 return (v.new-value = new-value)

 endif

 v.new-value= new-value

 for each constraint c’ in v.constraints such as c’ != c

 if (1-way(c’, v)) result = result && propagate(c’, v)

 else “do nothing”

 enfor

 return result

4. The interface

The MusicSpace interface represents both the sound

sources and the listener’s avatar. On Figure 6, a Jazz trio

music file is loaded: the user can move around not only

its avatar but also the sound sources (piano, bass and

drums) and listens in real time the music, mixed

according to the configuration of these sound sources.

The MusicSpace interface proposes several display

modes. These modes correspond to different filters on

the objects shown in the interface.

Figure 6: The MusicSpace interface in the "listening mode"

The listen mode (See Figure 6) is the simplest mode, as

it shows only the essential objects for user control (i.e.

the avatar and the sound sources). The user can move the

sound sources or the avatar without seeing the

underlying constraints.

Figure 7 : The MusicSpace Interface in the "programming" mode.

In the program mode (See Figure 7), the user can

visualize, remove or edit the set of constraints that

operate on sound sources. In this mode, the programmer

can create constraints corresponding to the specific

properties on the desired configuration of sound sources.

For instance, in Figure 7, a typical set of constraints

corresponding to a jazz trio has been created:

• The bass and drum sound sources are linked by a

“constant distance ratio” constraint, which ensures

that they remain grouped, distance wise.

SRF98-041

• The piano is linked with the rhythm section (bass and

drums linked together) by a “balance” constraint

(constant energy level constraint). This ensures that

the total level between the piano and the rhythm

section is constant.

• The piano is limited in its movements by a two limit

constraints. This ensures that the piano is always

heard but never too loud.

• The drum is forced to remain in an angular area by

two “angle constraints”. This ensures that the drum is

always more or less in the middle of the panoramic

range.

Adding a constraint in the interface is straightforward:

The user first selects the sound sources to be constrained

(the arguments), and then clicks on the appropriate

constraint in a constraint palette (see Figure 8). This

instantiates a corresponding constraint in the interface,

which is represented by a small ball linked to the

constrained sound sources by lines (see Figure 7).

Figure 8: the constraint palette

Other intermediary modes have been defined, between

Listen and Program. In particular, the mode Handles

show the various handles that have been defined to ease

the control of the sound sources.

For instance, when controlling a large number of sound

sources (See Figure 10), it is convenient to represent the

essential properties of the sound configuration and then

let the user control the handles instead of controlling

directly the sound sources.

Eventually, configurations of sound sources and related

constraints can be saved and restored in external files,

using a proprietary meta data text format.

5. MusicSpace-Audio

An audio version of MusicSpace has been prototyped.

This version allow to mix directly audio files on the PC

instead of using an external spatializer. This extension

uses the integrated Microsoft DirectX 3D technology.

Beside the better sound quality and variety brought by

the audio files, the audio version of MusicSpace raises

new constraints issues since the audio objects provide

different and specific parameters such as for instance the

sound sources orientation. This topic, as well as the

problem of multiplexing audio files for multi-track audio

streaming will be discussed in a forthcoming paper.

6. Applications

Our project has led to numerous applications both for

end users and professionals. We review here the most

promising ones.

6.1 Midi File Player

The basic MusicSpace interface (as shown in Figure 6)

allows to play Midi files that conform to the General

Midi specification: in this case, the file is parsed and the

system generates automatically the appropriate icons

(according to the midi program change number) for each

instrument.

6.2 Remote Mixing Table Controller

MusicSpace includes also a number of midi objects that

allow to control a sound mixer. For instance, a full

implementation of commands has been created to control

a Yamaha O2R mixer (See Figure 9).

Figure 9: MusicSpace controlling a Yamaha O2R sound mixer.

Additionally, we also introduced generalized Midi

objects with learning capabilities (automatic parsing of

incoming midi messages) that allow to control virtually

any remote controllable sound mixer.

This application of MusicSpace extends the possibilities

of the sound mixer by allowing to set up constraints

between any of its parameters. For instance, it is possible

to control graphically the auxiliary output of a channel of

the mixer to create a surround mixing with an ordinary

stereo oriented mixer.

6.3 Audio Mixing Interface

Figure 10 shows the interface of the audio version of

MusicSpace. Here 11 audio tracks are represented (from

a French Hit from Sony Music).

SRF98-041

Figure 10: a full configuration with 11 audio tracks and 6 handles.

Figure 11: In the handle mode MusicSpace displays only the

avatar, the sources and the handles; constraints are hidden.

In this example, we created six handles on the sound

sources corresponding to the main features of the mix:

• Rhythmic: controls the rhythm section of the

piece, i.e. bass and drums.

• Voices: controls all the human voices of the

piece (leading voices and back voices).

• Acoust.: controls the acoustic instruments of the

piece.

• Synth: controls the synthesized instruments

• Balance: is a handle on the two previous

handles. This handle allows to make a balance

between the amount of acoustic sound and the

amount of synthesized sound.

• Volume: is a handle on all sources and allows to

make all sources closer or farther without

changing the proportions of distances between

them.

The blue arrows shown on Figure 10 between the

sources represent one-way constraints of which we make

extensive use in this example to avoid incompatibility

problems between the handles.

7. Conclusion

The MusicSpace system shows that it is possible to give

users new degrees of freedom in sound spatialization,

while preserving some semantics on the mixing of sound

sources. MusicSpace provides a high level command

language for moving groups of related sound sources,

and may be used to control an arbitrary spatialization

system. MusicSpace was connected successfully to a

Midi Spatialization system for playing midi files, to a

midi-controlled audio mixing console for mixing multi-

track recordings, as well as to Ircam’s spatialization

system [6]. These applications promote the idea of

dynamic mixing, where sound engineers can delegate

safely a part of their responsibility in the mixing to

listeners.

8. References

[1] Borning A., Anderson R., Freeman-Benson B.,

“Indigo: A Local Propagation Algorithm for

Inequality Constraints”, Proceedings of the ACM

Symposium on User Interface Software and

Technology, pp. 129-136, 1996.

[2] Borning A., Freeman-Benson B., “Ultraviolet: A

Constraint Satisfaction Algorithm for Interactive

Graphics”, Constraints, Special Issue on

Constraints, Graphics, and Visualization, Vol. 3 No.

1, pp. 9-32, April 1998.

[3] Eckel G., “Exploring Musical Space by Means of

Virtual Architecture”, Proceedings of the 8th

International Symposium on Electronic Art, School

of the Art Institute of Chicago, 1997.

[4] Hosobe H., Matsuoka S., Yonezawa A.,

"Generalized local propagation: a framework for

solving constraint hierarchies", Proceedings of CP’

96, Boston, 1996.

[5] Hower W., Graf W. H., “a Bibliographical Survey

of Constraint-Based Approaches to CAD, Graphics,

Layout, Visualization, and related topics”,

Knowledge-Based Systems, Elsevier, vol. 9, n. 7,

pp. 449-464, 1996.

[6] Jot J.-M., Warusfel O., “A Real-Time Spatial Sound

Processor for Music and Virtual Reality

Applications”, Proceedings of ICMC, 1995.

[7] Lea R., Matsuda K., Myashita K., Java for 3D and

VRML worlds, New Riders Publishing, 1996.

[8] Pachet F., Delerue O., “A Temporal Constraint-

Based Music Spatializer”, ACM Multimedia

Conference, Bristol, 1998.

