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Abstract 

We describe a system in which users may control in real time the position of sound sources. We introduce the 

problem of mixing consistency, as the maintenance of good properties of sound source configurations, and 

propose a solution based on a constraint propagation mechanism. In the authoring mode, sound engineers may 

specify which spatialization constraints should be satisfied. In the listening mode listeners can modify the 

position of sources, and the constraint solver ensures the constraints are satisfied. 

 

 

1. Music Spatialization 

We believe that listening environments of the future can 

be greatly enhanced by providing users more meaningful 

user control. The most straightforward musical control is 

probably the spatialization of sound sources. 

Music spatialization has long been an intensive object of 

study in computer music research. Most of the work so 

far has concentrated in building software to simulate 

acoustic environments for sound signals. These 

techniques typically exploit difference of amplitude in 

sound channels, delays between sound channels to 

account for interaural distances, and sound filtering 

techniques such as reverberation to recreate impressions 

of distance (e.g. [6]). These spatialization techniques are 

mostly used for building virtual reality environments, 

such as [3] or [7]. We propose in this work to exploit 

spatialization technologies in a active way, by letting 

users change arbitrarily the spatialization of sound 

sources.  We show that this control induces a risk that 

the user creates configurations of sound sources which 

are not satisfactory, from the viewpoint of the sound 

engineer or composer. We propose a system – 

MusicSpace - in which the user may change the positions 

of sound sources, while ensuring that resulting 

spatializations are always “correct” in some precisely 

defined sense. 

2. MusicSpace 

MusicSpace is not a spatialization system per se, but 

rather an interface for issuing high level commands to a 

spatializer. The basic idea in MusicSpace is to represent 

graphically sound sources in a interface, as well as an 

avatar that represents the listener itself. In this window, 

the user may either move its avatar around, or move the 

instruments.  The relative position of sound sources to 

the listener’s avatar determine the overall mixing of the 

music, according to simple geometrical rules mapping 

distances to volume and panoramic controls (see Figure 

1). The real time mixing of sound sources is then 

performed by sending appropriate commands from 

MusicSpace, to whatever spatialization system 

connected to it, such as a mixing console, a Midi 

Spatializer, or a more sophisticated spatialization system 

such as  [6]. 
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Figure 1 : Volume of sound_sourcei = f(distance(graphical-objecti, 

listener_avatar)). f is a function mapping distance to Midi volume 

(from 0 to 127). Stereo position of sound source i = 

g(angle(graphical_Objecti, listener_avatar)), where angle is 

computed relatively to the vertical segment crossing the listener’s 

avatar, and g is a function mapping angles to Midi panoramic 

positions. 

In this context, MusicSpace is a command generator for 

an arbitrary spatialization system (see Figure 2). 

 

A spatialization
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Figure 2 : A Spatializer module 

3. Mixing Consistency 

The problem with allowing users to change the 

configuration of sound sources, and hence, the mixing, is 

that they do not have the knowledge required to produce 

coherent, nice-sounding mixings. Without any 

supervision, users can end up with configurations of 

sound sources which are not acceptable in a number of 

ways. For instance, by putting related sound sources too 
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much apart, or, conversely, by grouping somehow 

“incompatible” sources together. Another example is for 

instance that some sound sources should always be heard 

but should never be to loud and thus should remain in 

between some precisely defined boundaries. 

Indeed, the knowledge of the sound engineer is difficult 

to acquire –it takes years to become a sound engineer -, 

and hence to explicit and represent. In our context, 

however, we claim that a purely syntactical viewpoint is 

enough to address the issue of supervised mixing. The 

basic actions of the sound engineer are atomic actions on 

controls and parameters such as faders and knobs on the 

mixing table. However, mixing also involves higher 

level actions that can be defined as compositions of  

atomic actions. For instance, sound engineers may want 

to ensure that the overall energy level of the recording 

always lies between reasonable boundaries. Conversely, 

several sound sources may be logically dependent. For 

instance, the rhythm section may consist in the bass 

track, the guitar track and the drum track. Another 

typical mixing action is to assign boundaries to 

instruments or groups of instruments so that they always 

remain within a given spatial range. The consequence of 

these actions is that sound sources are not configured 

independently of each another. Typically, when a fader 

is raised, another one, (or a group of other faders) will be 

lowered.  

We propose in this paper to encode this type of 

knowledge on sound spatialization as constraints, which 

are interpreted in real time by an efficient constraint 

propagation algorithm, integrated in MusicSpace. 

3.1 Constraints for Interactive Systems 

Constraints can be defined as relations that should 

always be satisfied. Constraints are interesting because 

they are stated declaratively by the programmer, thereby 

avoiding him to program complex algorithms. Constraint 

propagation algorithms are particularly relevant for 

building reactive systems typically for layout 

management of graphical interfaces [5]. 

3.2 Constraints and Mixing Consistency 

We defined a set of constraints appropriate for 

specifying interesting relations between sound sources. 

Each sound source is represented by a point, i.e. two 

integer variables (one for each coordinate): pi = {xi, yi } 

with xi, yi  [1, 1000] (a typical screen). An additional 

variable l represents the position of the listener’s avatar, 

itself consisting of two integer variables: l = {xl, yl } with 

xl, yl  [1, 1000]. 

 

Most of the constraints on mixing involve a collection of 

sound sources and the listener. We describe here the 

most useful ones. 

• Constant Energy Level 

This constraint states that the energy level between 

several sound sources should be kept constant. 

According to our model of sound mixing, this constraint 

can be stated between variables pi, i = 1, .., n as follows: 

p l Ctei
i

n

− =
=


1

. Intuitively, it means that when one 

source is moved toward the listener, the other sources 

should be “pushed away”, and vice-versa. The constant 

value on the right-hand side of the constraint is 

determined by the current values of pi and l when the 

constraint is set.  Note that this constraint is non linear, 

and not functional (except in the case of two sources). 

• Constant Angular Offset 

This constraint is the angular equivalent of the preceding 

one. It expresses that the spatial configuration of sound 

sources should be preserved, i.e. that the angle between 

two objects and the listener should remain constant. It 

can be stated between variables p1 and p2 as: 

( , , )p l p Cte1 2 = . It is easily generalized to a collection 

of objects p1,…, pi…,pn. 

• Constant Distance Ratio 

The constraint states that two or more objects should 

remain in a constant distance ratio to the listener: 

p l p l1 1 2 2− = − ,
 

• Radial Limits of Sound Sources 

This constraint allows to impose radial limits in the 

possible regions of sound sources. These limits are 

defined by circles whose center is the listener’s avatar 

(see Figure 7). 

p li − inf
 (lower limit),  p li − sup

  (upper 

limit) 

• Grouping constraint 

This constraint states that a set of n sound sources 

should remain grouped, i.e. that the distances between 

the objects should remain constant (independently of the 

listener’s avatar position): 

( )  − =i j n x x Ctxi j i j, : ,
and ( )y y Ctyi j i j− = ,

 

 

Other typical constraints include symbolic constraints, 

holding on non geographical variables. For instance, an 

“Incompatibility constraint” imposes that only one 

source should be audible at a time: the closest source 

only is heard, the others are muted. Another complex 

constraint is the “Equalizing constraint”, which states 

that the frequency ratio of the overall mixing should 

remain within the range of an equalizer. For instance, the 

global frequency spectrum of the sound should be flat. 

3.3 Constraint algorithm 

The examples of constraints given above show that the 

constraints have the following properties: 

• the constraints are not linear. For instance, the 

constant energy level (between two or more sources) 

is not linear. This prohibits the use of simplex-

derived algorithms. 

• The constraints are not all functional. For instance, 

geometrical limits of sound sources are typically 

inequality constraints. 

• The constraints in our context induce cycles. For 

instance, a simple configuration with two sources 
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linked by a constant energy level constraint and a 

constant angular offset constraint yields a cyclic 

constraint graph. 

 

There is no general algorithm, to our knowledge, which 

handles non linear, non functional constraints with 

cycles. Indigo [1] is an algorithm for functional 

constraints with inequalities, but does not handle cycles. 

Conversely, cycle solvers such as Purple (linear 

constraints) and DeepPurple for linear inequalities, do 

not handle non linear constraints.  The general solution 

as proposed in the literature consists in using hybrid 

algorithms such as Detail or UltraViolet as mentioned in 

section 3.1. However, these algorithms add a 

considerable level of complexity: they are difficult to 

implement and tune, and may have unexpected behavior 

[4]. 

 

Instead, we designed a simple propagation algorithm 

which implements only a part of our requirements, but 

with predictable and reactive behavior [8]  . The current 

algorithm we use is based on a simple propagation 

scheme, and allows to handle functional constraints, 

inequality constraints. It handles cycles simply by 

checking conflicts. Each variable v is associated to the 

set of constraints holding on it (predicate constraints(v)). 

Each functional constraint has a set of procedures or 

methods, used to compute values of output variables 

from values of input variables. The algorithm is 

triggered by the modification of one variable, and is 

described below: 

 
// Each variable holds a list of constraints, and each 

// constraint holds the list of its variables 

// The propagation depends on the type of the constraint 

propagate (Constraint c, Variable v) 

 if c is functional: propagateFunctional(c, v) 

 if c is inequality: propagateInequality(c, v) 

 

propagateFunctionalConstraint(Constraint c, Variable v) 

 result = true  

 for each variable v’ in c. variables, such as v’  v, 

  new-value = perform-method (v’, v, v.new-value) 

  result = result && perturbate(v’, new-value, c ) 

 endfor 

 return result 

 

// Inequality constraints are just checked 

propagateInequalityConstraint(variable v , perturbation v-

perturbation ) 

 return c.isSatisfied() 

 

// Each variable holds a value (actual current value), and a 

// new-value, which represents a perturbation, either triggered 

// by the user or computed 

perturbate(Variable v, Value new-value, Constraint c) 

 result = true 

 if  v.value  v.new-value // v has already been perturbated 

  //perturbation is the same 

  return (v.new-value = new-value)  

 endif 

 v.new-value= new-value 

 for each constraint c’ in v.constraints such as c’ != c 

  result = result && propagate(c’, v) 

 enfor 

 return result 

Figure 3.  Propagation algorithm of MusicSpace 

An important property of the algorithm is that new 

constraint classes may be added easily, just requiring the  

definition of a set of propagation procedures (perform-

method). 

3.4 Handles as one-way constraints 

There are cases when full-fledged constraints are not 

appropriate for the task. For instance, when a sound 

source is constrained in two (or more) incompatible 

ways, in different contexts. 

This situation typically occurs when we need to specify 

different usages of sound sources, independent of each 

others. For instance, it makes sense to group together all 

the sound sources under a single constraints representing 

the global volume or “presence” of the piece. In this 

case, we would like all the sound sources to be linked by 

a constant distance ratio constraint. However, this 

constraint should be enforced only when the user wants 

to actually modify the global volume/presence of the 

whole piece. Similarly, it can be interesting to group 

related sound sources (e.g. voice sources) together, 

independently of other possible constraints. If we 

represent all these requirements as standard, multi way 

constraints, these constraints will be mutually 

incompatible.  

To solve this problem, we introduce the notion of 

handle. A handle is an extra object added in the 

interface, which represents a particular usage of the 

sound sources: for instance, grouping the rhythm section, 

grouping the human voices of the piece, or balancing 

between the rhythm section and the voicing. When the 

piece contains a large number of sound sources, these 

handles provide a way of splitting the constraint set in 

different, mutually incompatible subsets. Handles are 

represented in the interface by green balls that can 

possibly be given a name (see Figure 10). 

 

Figure 4: a problematic example 

 

 

 

Figure 5: Solving the problem by introducing One-way constraints 
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To implement handles, we introduce one-way constraints 

in the algorithm. One way constraints can be seen as 

constraints which are activated conditionally. 

The proposed algorithm makes it easy to integrate so-

called one way constraints: one way constraints are 

binary constraints that come between a constraint and 

each of its constrained object. According to its state 

(object to constraint, or constraint to object) the one way 

constraint propagation method will simply transmit or 

hide the perturbation. 

We introduce the function one-way(constraint, 

variable) which yields true if the constraint must 

propagate its change to the variable. 

In the case One-way constraint to object, the only change 

to do in the algorithm of section 3.3 is the following: 
 

propagateFunctionalConstraint(Constraint c, Variable v) 

 result = true  

 for each variable v’ in c. variables, such as v’  v, 

  new-value = perform-method (v’, v, v.new-value) 

  if (1-way(c, v’)) “do nothing” 

   else result = result && perturbate(v’, new-value, c ) 

 endfor 

 return result 

 

In the case of a perturbation from an object to a one-way 

constraint to object, the only change to do is the 

following: 
 

perturbate(Variable v, Value new-value, Constraint c) 

 result = true 

 if  v.value  v.new-value // v has already been perturbated 

  //perturbation is the same 

  return (v.new-value = new-value)  

 endif 

 v.new-value= new-value 

 for each constraint c’ in v.constraints such as c’ != c 

 if (1-way(c’, v)) result = result && propagate(c’, v) 

  else  “do nothing” 

 enfor 

 return result 

 

4. The interface 

 

The MusicSpace interface represents both the sound 

sources and the listener’s avatar. On Figure 6, a Jazz trio 

music file is loaded: the user can move around not only 

its avatar but also the sound sources (piano, bass and 

drums) and listens in real time the music, mixed 

according to the configuration of these sound sources.  

The MusicSpace interface proposes several display 

modes. These modes correspond to different filters on 

the objects shown in the interface. 

 

 

Figure 6: The MusicSpace interface in the "listening mode" 

The listen mode (See Figure 6) is the simplest mode, as 

it shows only the essential objects for user control (i.e. 

the avatar and the sound sources). The user can move the 

sound sources or the avatar without seeing the 

underlying constraints. 

 

 

Figure 7 : The MusicSpace Interface in the "programming" mode.  

In the program mode (See Figure 7), the user can 

visualize, remove or edit the set of constraints that 

operate on sound sources. In this mode, the programmer 

can create constraints corresponding to the specific 

properties on the desired configuration of sound sources. 

For instance, in Figure 7, a typical set of constraints 

corresponding to a jazz trio has been created: 

 

• The bass and drum sound sources are linked by a 

“constant distance ratio” constraint, which ensures 

that they remain grouped, distance wise. 
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• The piano is linked with the rhythm section (bass and 

drums linked together) by a “balance” constraint 

(constant energy level constraint). This ensures that 

the total level between the piano and the rhythm 

section is constant. 

• The piano is limited in its movements by a two limit 

constraints. This ensures that the piano is always 

heard but never too loud. 

• The drum is forced to remain in an angular area by 

two “angle constraints”. This ensures that the drum is 

always more or less in the middle of the panoramic 

range. 

 

Adding a constraint in the interface is straightforward: 

The user first selects the sound sources to be constrained 

(the arguments), and then clicks on the appropriate 

constraint in a constraint palette (see Figure 8). This 

instantiates a corresponding constraint in the interface, 

which is represented by a small ball linked to the 

constrained sound sources by lines (see Figure 7). 

 

 

Figure 8: the constraint palette 

Other intermediary modes have been defined, between 

Listen and Program. In particular, the mode Handles 

show the various handles that have been defined to ease 

the control of the sound sources.  

For instance, when controlling a large number of sound 

sources (See Figure 10), it is convenient to represent the 

essential properties of the sound configuration and then 

let the user control the handles instead of controlling 

directly the sound sources.   

 

Eventually, configurations of sound sources and related 

constraints can be saved and restored in external files, 

using a proprietary meta data text format. 

5. MusicSpace-Audio 

An audio version of MusicSpace has been prototyped. 

This version allow to mix directly audio files on the PC 

instead of using an external spatializer. This extension 

uses the integrated Microsoft DirectX 3D technology. 

Beside the better sound quality and variety brought by 

the audio files, the audio version of MusicSpace raises 

new constraints issues since the audio objects provide 

different and specific parameters such as for instance the 

sound sources orientation. This topic, as well as the 

problem of multiplexing audio files for multi-track audio 

streaming will be discussed in a forthcoming paper.  

 

6. Applications 

Our project has led to numerous applications both for 

end users and professionals. We review here the most 

promising ones. 

6.1 Midi File Player 

The basic MusicSpace interface (as shown in Figure 6) 

allows to play Midi files that conform to the General 

Midi specification: in this case, the file is parsed and the 

system generates automatically the appropriate icons 

(according to the midi program change number) for each 

instrument. 

6.2 Remote Mixing Table Controller 

MusicSpace includes also a number of midi objects that 

allow to control a sound mixer. For instance, a full 

implementation of commands has been created to control 

a Yamaha O2R mixer (See Figure 9 ). 

 

 

Figure 9: MusicSpace controlling a Yamaha O2R sound mixer. 

Additionally, we also introduced generalized Midi 

objects with learning capabilities (automatic parsing of 

incoming midi messages) that allow to control virtually 

any remote controllable sound mixer.  

This application of MusicSpace extends the possibilities 

of the sound mixer by allowing to set up constraints 

between any of its parameters. For instance, it is possible 

to control graphically the auxiliary output of a channel of 

the mixer to create a surround mixing with an ordinary 

stereo oriented mixer. 

6.3 Audio Mixing Interface 

Figure 10 shows the interface of the audio version of 

MusicSpace. Here 11 audio tracks are represented (from 

a French Hit from Sony Music). 
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Figure 10: a full configuration with 11 audio tracks and 6 handles. 

 

Figure 11: In the handle mode MusicSpace displays only the 

avatar, the sources and the handles; constraints are hidden. 

In this example, we created six handles on the sound 

sources corresponding to the main features of the mix:  

 

• Rhythmic:  controls the rhythm section of the 

piece, i.e. bass and drums.  

• Voices:  controls all the human voices of the 

piece (leading voices and back voices). 

• Acoust.: controls the acoustic instruments of the 

piece. 

• Synth: controls the  synthesized instruments 

• Balance:  is a handle on the two previous 

handles. This handle allows to make a balance 

between the amount of acoustic sound and the 

amount of synthesized sound.  

• Volume: is a handle on all sources and allows to 

make all sources closer or farther without 

changing the proportions of distances between 

them. 

 

The blue arrows shown on Figure 10 between the 

sources represent one-way constraints of which we make 

extensive use in this example to avoid incompatibility 

problems between the handles. 

7. Conclusion 

The MusicSpace system shows that it is possible to give 

users new degrees of freedom in sound spatialization, 

while preserving some semantics on the mixing of sound 

sources. MusicSpace provides a high level command 

language for moving groups of related sound sources, 

and may be used to control an arbitrary spatialization 

system. MusicSpace was connected successfully to a 

Midi Spatialization system for playing midi files, to a 

midi-controlled audio mixing console for mixing multi-

track recordings, as well as to Ircam’s spatialization 

system [6]. These applications promote the idea of 

dynamic mixing, where sound engineers can delegate 

safely a part of their responsibility in the mixing to 

listeners.  
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