

A Combinatorial Pattern Generation Approach to Content-Based
Music Selection

François Pachet
SONY CSL Paris, 6, rue Amyot 75005, Paris, FRANCE

Tel: (33) 1 44 08 05 16, Fax: (33) 1 45 87 87 50, E-mail: pachet@csl.sony.fr

Abstract

We describe a system to build on-the-fly music programs that satisfy user preferences, while ensuring global

musical consistency. Each item in a database is described by various musical attributes, such as style or tempo.

Music programs are seen as sequences of items satisfying predefined constraints. Building sequences is seen as

a combinatorial pattern generation problem. We introduce three types of constraints to specify such sequences:

constraints of similarity, difference and cardinality, with efficient solving algorithms for each of them.

1. Content-Based Music Selection
There is a growing need today for intelligent interfaces to

access music catalogues. First, high-speed networking

enables large scale access to huge multimedia databases.

Second, record companies & broadcasters want a more

flexible exploitation of their catalogues. Finally, users

want to compile their own selections on a portable format,

according to their personal taste. Although it is difficult to

characterize user preferences, there are two contradictory

parameters for satisfying user’s musical tastes: 1) users

want to find titles they already know, 2) users want to

discover new music. Of course finding the right

compromise is the key issue.

However, work on music delivery has so far concentrated

on networks problems, and not on end user interfaces.

Existing interfaces exploit either statistical information

from user actions (e.g. [1]), or strictly marketing-driven

strategies such as [2]. In all cases, the problem of music

catalogue access is seen as a purely database/network

problem. The result is a poor exploitation of the

catalogue, and poor user satisfaction in music access.

Instead, we propose a technique for proposing users

coherent sequences of music titles, rather than collections

of individual titles. We produce such sequences by

considering the problem as a combinatorial pattern

generation problem.

2. Recital Composer
The idea in RecitalComposer is to exploit intelligently a

database of music titles, by producing sequences of titles

satisfying explicit generic properties. The properties are

of two kinds: 1) explicit user preferences, and 2)

properties on sequences. User preferences are expressed

at any level of detail: either a preferred musical style (e.g.

“Jazz”), a given song or set of songs, a given author,

voice type, etc.

Properties of sequences are expressed as constraints, as

explained below. Finally, a constraint solver finds all the

solutions of the constraint problem in a reasonable time

thanks to specialised constraint propagation algorithms.

2.1 A Database of Music Titles
A database of music titles is built, in which each music

title is described by musical attributes. The attributes

necessary to build interesting sequences are of two sorts:

1) administrative attributes such as name of title, author,

duration, 2) musical attributes such as: musical style, type

of voice, type of instrumentation, instruments used, type

of melody. Each attribute takes its value within a

predefined taxonomy designed with experts from Sony

Music France. For instance, styles are picked out of a

taxonomy of styles. The taxonomy contains 150 styles,

and includes a relation of similarity between styles. For

instance, “Jazz-Blues” is close to “Jazz-Crooner”, but not

to “Classical-dodecaphonic”.

3. Constraints on Music Programs
Instead of allowing a fully general constraint language,

which leads to difficult to use and inefficient algorithms,

we identified three main classes of constraints to specify

sequences: 1) constraints expressing similarities in the

sequence, which will ensure some sort of continuity and

coherence, 2) constraints expressing differences in the

sequence, which will bring novelty and surprise in the

result, and 3) constraints expressing cardinalities, i.e.

numbers of items satisfying given properties, expressing

explicit user preferences. The combination of these

constraints creates a complex combinatorial problem

(especially if the database contains about 1 million titles)

which is solved by an appropriate constraint solver.

3.1 Constraints of Similarity
This constraint allows to state that within a given range,

the items are successively similar to each other. The

similarity is defined by a binary predicate holding on one

given attribute j. The general formulation is :

S(a, b, j, similar(,)) meaning that :

For every item pi, i  [a, b-1], similar(pi.aj, pi+1.aj) is

true.

Where a and b are integers representing indexes, j is an

attribute, and close(,) is a two variable predicate. Each of

the variable of the predicate denotes an item’s jth

attribute. For instance, this constraint allows to state that

all pieces in a given contiguous range (say the first 10)

should have “close” styles, where closeness is the

similarity relation of the underlying style classification.

3.2 Constraints of Difference
This constraint allows to state difference of attributes on a

set of contiguous items. Its general formulation is :

D(I, j) meaning that:

All items pi, i  I, have pairwise different values for

attribute j. Where I is a set of item indexes, j is an

attribute index. For instance, this constraint class allows

to state that all pieces in a given range (say the first 10)

should have different authors, or different styles, etc.

3.3 Constraints of Cardinality
These constraints allow to impose properties on sets of

items. They are the most difficult from a combinatorial

point of view, because they state properties on the whole

sequence. There are two such cardinality constraints.

3.3.1 Cardinality on items
This constraint allows to state that the number of items

whose attribute j belongs to a given set E is within [a, b].

The general formulation is :

CI(I, j, a, b, E) meaning that | {i  I; pi.aj  E } |  [a, b]

Where I is a set of item indexes, j is an attribute index, a

and b are integers and E is a subset of the possible values

of attribute j. For instance, this constraint can be used to

state that the number of pieces within a given range (e.g.

the first 10 pieces), whose style is "Rock", should be

comprised between, say, 4 and 6.

3.3.2 Cardinality on attribute values
This constraint class allows to state that the number of

different values for attribute j of a number of items is

within [a, b]. The general formulation is:

CA(I, j, a, b) meaning that: | {pi.aj i  I} |  [a, b]

Where I is a set of item indexes, j is an attribute index, a

and b are integers. This constraint can be used to state that

three pieces should have at least two different tempo.

3.4 Example
The constraint algorithm is based on a forward-checking

loop [3], increased with specialized filtering methods for

each of the constraints. It finds all the solutions of the

constraint problem in a reasonable time, and was

validated by a few examples of realistic music programs.

For instance, a typical music program is the following:

• Contains 12 different titles (to fit on a CD / Minidisc).

• Path is continuous stylistically: each piece belongs to

a style “close” to the style of the preceding piece.

• Starts by a “Soul-Jazz” piece, and ends by a “Soul-

Crooner” piece.

• Starts rather slowly and end quickly.

• Evolves continuously tempo-wise: each piece has a

tempo which is close to the tempo of the preceding

piece.

• All authors are different.

This program is represented by the following constraints :

• Cardinality constraint on first and last piece to set

imposed styles,

• Similarity constraint on styles,

• Cardinality constraint on tempo for first and last piece.

• Similarity constraint on tempos.

• Difference constraint on pieces (index attribute)

• Global difference constraint on authors

3.5 The interface
The current interface is designed for professional use, and

allows to specify constraint sets, run them on an arbitrary

music catalogue (see Figure 1), and visualize the result. A

specialized interface allows to specify for each constraint

all the required parameters (see Figure 2).

Figure 1. The Interface for building music sequences.

Figure 2. The interface for specifying constraint sets.

4. Conclusion
We claim that the combinatorial pattern generation

approach is a good solution to the problem of intelligent

access to music catalogues. This approach requires

sophisticated combinatorial search methods, together with

efficient specialized constraint classes, that we designed

successfully. Such an approach should allow both record

companies to better exploit their catalogue and user to

listen to music more adapted to their tastes and desires of

novelty, because it creates music sequences which satisfy

user preferences, while providing them with novel music.

5. References
[1] Amazon Music Store: http://www.amazon.com

[2] Firefly system: http://www.firefly.com

[3] Roy, P. Pachet, F. Reifying Constraint Satisfaction in

Smalltalk. Journal of Object-Oriented Programming

(JOOP), 10 (4), pp. 43-51, July/August 1997.

