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Chapter 1
Bebop Virtuosity Explained

Francois Pachet

Abstract Virtuosos are human beings who exhibit exceptional performance in their
field of activity. In particular, virtuosos are interesting for creativity studies because
they are exceptional problem-solvers. However, virtuosity is an under-studied field
of human behaviour. Little is known about the processes involved to become a vir-
tuoso, and in how they distinguish themselves from normal performers. Virtuosos
exist in virtually all domains of human activities, and we focus in this chapter on
the specific case of virtuosity in jazz improvisation. We first introduce some facts
about virtuosos coming from physiology, and then focus on the case of jazz. Au-
tomatic generation of improvisation has long been a subject of study for computer
science, and many techniques have been proposed to generate music improvisation
in various genres. The jazz style in particular abounds with programs that create
improvisations of a reasonable level. However, no approach so far exhibits virtuoso-
level performance. We describe an architecture for the generation of virtuoso bebop
phrases which integrates novel music generation mechanisms in a principled way.
We argue that modelling such outstanding phenomena can contribute substantially
to the understanding of creativity in humans and machines.

1.1 Virtuosos as Exceptional Humans

1.1.1 Virtuosity in Art

There is no precise definition of virtuosity, but only a commonly accepted view that
virtuosos are human beings that excel in their practice to the point of exhibiting
exceptional performance. Virtuosity exists in virtually all forms of human activity.
In painting, several artists use virtuosity as a means to attract the attention of their
audience.
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2 Frangois Pachet

Felice Varini paints on urban spaces in such a way that there is a unique view-
point from which a spectator sees the painting as a perfect geometrical figure. The
effect is similar to looking at a city photograph on which the figure would have
been added with a digital picture editor. Moving away from this precise viewpoint
slightly distorts the figure; moving further away breaks it into fragmented shapes,
thus breaking the illusion, which reveals the unsuspected virtuosity of these appar-
ently simple creations.

Similarly, artist Liu Bolin paints himself so as to become almost invisible, when
he stands exactly at specific locations (near a balustrade, in a cinema with red chairs,
etc.). In both cases, what is at stake, from our viewpoint, is the production of simple
objects (geometrical figures in the case of Varini, mundane backgrounds in the case
of Liu Bolin), together with evidence of the difficulty inherent to their realisation.

Another example in the visual domain is the Ryoanji stone garden in Kyoto.
This garden is well-known for the calm and serene atmosphere it creates and many
studies have attempted to uncover the reasons of its attraction (see e.g., Tonder et al.
(2002)). However, one reason stands out: wherever the watcher sits, only 14 out of
the 15 stones are visible at a time (Figure 1.1). Such a property turns an apparently
random configuration of stones into a fascinating, singular creation. We argue that
a reason for this fascination may also be that the object to see is again both simple
and understandably difficult to create.

Fig. 1.1 The Ryoanji stone garden in Kyoto. It is said that all stones are visible except one, what-
ever the sitting position.

Virtuosity exists, or rather, occurs, also in time-related performance. People
trained in performing fast mental computation compute operations several orders
of magnitude faster than normal humans. Alexis Lemaire, world champion of the
extraction of 13/ root of very large integers (200 digits), exhibits spectacular per-
formance in all sorts of mental calculations. He calls this activity hypercalculia
(Lemaire and Rousseaux; 2009). What he produces is simple, but almost no one
else can do it.

Virtuosity (from the Italian word virfuoso) is an essential dimension of music
performance. In the Western culture, virtuosity in performance is a controversial
notion and is the subject of many debates. On one hand, virtuosity is considered the
greatest possible achievement of the art of solo instrumental performance (Valéry;
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1 Bebop Virtuosity Explained 3

1948; Penesco; 1997). On the other hand, virtuosity is often considered in opposition
to expressivity (see e.g., O’Dea (2000)). But virtuosos are above all outstanding
classical musicians (violinists in particular) who perform musical pieces known to
be extremely difficult, at the limit of human capacities.

In the field of poetry, virtuosity manifests itself under the form of “satisfying
difficult constraints.” It was shown for instance that the adaptation of Latin rhetoric
to old English poetry created complex constraints for the authors. Satisfying these
constraints was the source of great inventiveness and creation (Steen; 2008). The
association Oulipo (OuLiPo; 1988) pushed very far the idea that constraints, in par-
ticular difficult ones, could be the source of inventiveness in literature and poetry.
Novels by Georges Perec such as “The void” (a novel without the vowel “e”), or its
counterpart “Les Revenentes” (a novel with “e” as the only vowel) are spectacular
achievements of this movement.

1.1.2 The Cognitive Science Perspective on Virtuosity

Despite these achievements, virtuosity has hardly been addressed by cognitive sci-
ence. From the viewpoint of physiology, there are known limits to the motor systems
and the sensory-perceptive abilities of humans that are relevant to the study of virtu-
osity (London; 2004, 2010). For instance, Fitt’s law (Fitt; 1954) states that the time
it takes to reach an object is a function of the distance to, and the size of, the target
object(s). Consequently, tradeoffs have to be found between speed and accuracy,
both ingredients being required for achieving virtuosity, e.g., in music. Another im-
portant law governing human interaction abilities is the Hick’s law (Hick; 1952),
which states that the time it takes to take a decision is a function of the number of
possible answers:

T = b x1ogy(,+1)ywhich generalizes to: T = b x H, where H is the entropy of the
system.

These two rules combined yield the interesting argument that virtuosity is some-
how only possible at the cost of not thinking. As Justin London (2010) sharply
phrases it: “Virtuosos can suppress the executive/monitoring functions of their
brains when they perform; and thereby avoid the speed traps of their pre-frontal
cortices”.

The way to achieve this is by intense training. The 10,000 hour rule (see e.g.,
Ericsson et al. (1993); Sloboda et al. (1996); Gladwell (2008)) states that about
10,000 hours of training are required to become a world expert in any domain. Most
biographies of well-known musicians confirm the fact that music virtuosos (in clas-
sical music, jazz, and even pop) have spent most of their youth training (Mozart,
Charlie Parker, John Coltrane, Bireli Lagrene, the Beatles).
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4 Frangois Pachet

1.1.3 Virtuosity as an Attraction Device

Bird songs are particularly interesting for virtuosity studies as they are a rare case
in which the whole production and reception process has been studied in-depth,
yielding breakthroughs and fascinating findings.

Researchers in animal behaviour have long been interested in the phenomenon of
bird song production and its role in the mating process. In several bird species, male
birds produce songs primarily to attract females. The issue of what makes a bird
song more attractive than others has received particular attention in recent years.
Various results have shown that specific features of songs can account for their pop-
ularity. For instance, great reed warbler females (Acrocephalus arundinaceus) ex-
hibit a preference for long songs over short ones in the wild (Bensch andHasselquist;
1991).

More interestingly, the study by Draganoiu et al. (2002) focused on the case
of the domesticated canary (Serinus canaria). Male canary songs have a specific
phrase structure. Two features of these phrases were shown to significantly increase
liking: frequency bandwidth and trill rate. However, it was also shown that these two
features are somehow contradictory: similarly to Fitt’s law, a tradeoff is observed in
real phrases, due to the specific motor constraints of the birds vocal track.

The breakthrough experiment of Draganoiu et al. (2002) consisted of synthe-
sising artificial phrases optimising these two features in an unrealistic way that is
“beyond the limits of vocal production”. The exposition of these artificial phrases
to females birds showed unequivocally that females preferred these phrases to the
natural ones (see Figure 1.2). An interesting interpretation for this preference is that
the production of “difficult” phrases maximising both bandwidth and syllable rate
may be a reliable indicator of male physical or behavioural qualities.

This evolutionary argument emphasises the role of virtuosity in music appreci-
ation. In popular music, virtuosity is explicitly present in specific genres (e.g. so-
called shredding in hard-rock, illustrated by guitarists such as Yngwie Malmsteen,
or melodic-harmonic virtuosity in bebop), as we show below.

1.1.4 Virtuosos as Creators

In this chapter, we adopt a specific perspective on virtuosity. From the viewpoint
of complexity and computer science, we envisage virtuosos as exceptional prob-
lem solvers. Virtuosity can be objectively measured, observed, and as such is, “as a
concept, closer to the ground, than creativity” (Howard; 2008).

Indeed, the capacity to effortlessly navigate in large search space in real-time
is not only a matter of physiological prowess. By transferring part of the decision
processes to the body, a virtuoso naturally compiles his knowledge in a remarkable
way that can teach us a lot about innovative problem-solving.

For instance, virtuosos in mental calculation invent and make extensive use of
so-called mathematical tricks. As an example, squaring any number ending in 5 can
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1 Bebop Virtuosity Explained 5
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After Draganoiu et al. (2002)

Fig. 1.2 The distribution of canary phrases, in a bandwidth/tempo space, representing the natural
tradeoff between bandwidth and syllabic tempo. Red circles represent the phrases used for the
experiment. The artificial top right phrases optimising the two features in unrealistic ways were
the most successful.

be done easily using a simple formula (take the first digits except the last 5, multiply
it by itself plus 1, and then concatenate 25 at the end). Some of these tricks are well-
known, but many others are not, and probably ignored by their inventors: intense
training may result in exceptional performance, not necessarily in clear explana-
tions. In the following sections, we show how jazz virtuosos produce interesting
inventions, and how modelling this virtuosity leads to interesting insights about the
nature of invention and creativity.

1.2 The Case of Jazz

Much like language, the ability of humans to spontaneously improvise music in real
time is considered by many as an extraordinary skill, a sort of magic. Most of this
magic, again, comes from hard training. As Levine (1995) states in his introduc-
tion: “A great jazz solo consists of 1% magic and 99% stuff that is explainable,
analysable, categorisable and doable. This book is mostly about the 99% stuff.*
This chapter is about putting the 99% stuff in a machine, and making the remaining
1% explicit. In particular, our aim is to separate clearly what can be reasonably au-
tomated — what virtuosos are able to do unconsciously — from what emanates from
artistic, conscious decision-making.

Invented in the 1940s with Charlie Parker and Dizzie Gillespie, bebop is an id-
iom of jazz where a strong emphasis is put on melodic and harmonic dimensions.
Virtually all instruments of the Classical orchestra have been used by bebop musi-
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6 Frangois Pachet

cians. Nowadays, bebop musicians continue expanding the style. The case of jazz
bebop improvisation is particularly interesting because the specific constraints of
bebop are shared unambiguously and can be easily expressed using well-defined
languages: In some sense, jazz improvisation is a special form of computing.

Scientists have long tried to debunk the magic of jazz improvisation, starting with
the psychologist Philip Johnson-Laird. His work is not to be judged by the musical
quality of his algorithmic productions, but by the seminal nature of his arguments.
One of his main claims is that the ability to produce an improvisation does not
require any “short-term memory” (Johnson-Laird; 1991, 2002). He demonstrated
this idea by proposing memoryless automata that automatically generate rhythmic
and melodic material. Since then, more powerful algorithmic techniques have been
used to produce jazz improvisation (see §1.3), but it can be said that the problem
of modelling “basic” bebop improvisation has been solved, notably by exhibiting
improvisation generators satisfying the basic rules of the game (detailed in §1.2.3).

However, the improvisation problem has been only partially solved. Trained jazz
musicians listening to the examples produced by these previous works rarely expe-
rience the feeling of hearing a machine outperforming humans.

In fact, professional bebop musicians are like Olympic sportsmen or chess cham-
pions, reaching a level of technicality which is far beyond the capacities of a begin-
ner. They are usually sought after not so much because they exhibit a general “ability
to improvise” — children can also improvise — but for their specific display of virtu-
osity. Contemporary jazz improvisers such as John McLaughlin, Al Di Meola, Bireli
Lagrene (guitar), or Stefano di Battista (saxophone) exhibit a level of virtuosity that
seems to reach beyond the limits of what most humans can do (the expression “not
human” appears indeed often in commentaries about these performances on social
Web sites). They play intricate phrases at such a speed that even the transcription
of their solos from recording is a challenging task. Deciding which notes to play at
that speed seems indeed impossible, so the virtuosity question can be rephrased as:
How can one perform and execute these musical choices so accurately and so fast?

Of course, performance as well as timbral dimensions are undoubtedly important
in music, and can themselves be the subject of virtuosity display (Bresin; 2000), but
these are outside the scope of our study: Following the argument that “bebop is more
about content than sounds” (Baker; 2000), we focus here on the melody generation
task. We consider that virtuosity is not only an appealing facet of bebop, but one of
its essential features. This situation bears some intriguing analogy with bird singing
behaviour. Though bebop virtuosity is not only about speed as we will see below,
this analogy suggests a primary role of speed in the attraction for specific melodic
movements.
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1 Bebop Virtuosity Explained 7

1.2.1 The Rules of the Game

In this section we define precisely the musical corpus we target: linear improvisa-
tion, which corresponds, roughly speaking, to virtuoso passages of bebop improvi-
sations.

1.2.2 Bebop Phrases

Virtuoso phrases are played fast, typically 1/16"" notes at 120 bpm or more, which
represent at least 8 notes per second. This speed implies a number of characteristics
for these passages that we call “linear”. The term linear has been used in the jazz
theory literature (e.g. Ricker (1997)) to describe phrases built from scales rather than
from chords (i.e. arpeggios), thereby creating a sensation of melodic or horizontal
consistency. More precisely we define linear improvisations as phrases which are
(1) played fast (eighth-notes or faster), (2) monophonic, (3) without silences, and
(4) rhythmically regular.

All these criteria are implied by speed: monophony because it is usually impos-
sible to play fast a polyphonic instrument. Regular rhythm means that each beat in
a measure is played with notes of the same durations (for the sake of simplicity, 1/4
notes, 1/8 notes, 1/16 notes, or triplets thereof, see Figure 1.3). Rhythmic regularity
is also implied by speed as it is very difficult to change the rhythm when playing
fast. Linear improvisation is pure melodic invention, other musical dimensions are
secondary.

3
O [T] |

i | -

>

Fig. 1.3 Examples of various
rhythms used during linear
improvisation.

RN

All virtuoso bebop musicians include linear passages in their choruses. Virtuoso
improvisations are of course rarely entirely linear, but they are often at least locally
so. As we hypothesise, linear passages correspond to a specific, intentional mode of
musical production deliberately chosen (at some risk) by the musician.

1.2.3 The Melodic/Harmonic Interplay

Bebop improvisation is a particular form of tonal music in which harmony plays a
central role. Given a chord sequence, usually taken from a shared repository such
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8 Frangois Pachet

as the Real Book (Real; 1981), the game consists of producing a stream of notes
that satisify two criteria simultaneously: harmonic consistency and continuity. This
game, commonly referred to as “playing or negotiating the changes”, can be consid-
ered the main technical challenge of bebop improvisation (it is also possibly a key
ability in other domains, such as management, see Holbrook (2009)). Paradoxically,
an extra recipe for producing interesting melodies consists of breaking the first rule
through various escape mechanisms, as we will see below.

To the ears of a trained musician, virtuoso choruses rarely contain any mistakes
with regards to these principles. This is a striking property of virtuosos in general,
and jazz improvisers in particular: they produce perfect melodies, sounding as if
they were proof-read before being delivered. We will now review these principles.

1.2.3.1 Harmonic Consistency

The generated melody must comply with the current chord in the sequence. Strictly
speaking, this means that the melody should consist mostly of notes which belong
to a scale appropriate for the chord. The identification of the correct scale requires,
in principle, an analysis performed on the whole chord sequence. Chord sequence
analysis was shown to be a non-trivial task in general (Steedman; 1984). In practice,
however, simpler forms of analysis are used, which consist in using ready-made
associations between chords and scales. Such associations are routinely available in
harmonic treatises, e.g., in Aebersold (2000). For instance, on a minor 7(5b) chord,
say, D minor 7 (5b), one can use a harmonic minor scale one minor third above the
root (here, F' harmonic minor).

1.2.3.2 Continuity

Jazz beginners often improvise by playing arpeggios corresponding to each chord:
this simple technique satisfies local harmonic satisfaction by definition, but pro-
duces obviously uninteresting, unmelodic phrases. Producing a “sense of melody”
is difficult to define precisely. Continuity is a good approximation and is easier to
define. We will see that low-order Markov processes exploiting carefully chosen
scales guarantee a form of natural continuity.

Melodic continuity is a difficult challenge for a human when playing fast, as
it requires the ability to find quickly short paths between the note currently being
played and the next ones, which may be in a different scale. This ability is referred
to as chord change negotiation, stressing its inherent problem-solving dimension.

Note that continuity does not necessarily imply brownness, in the sense of (Voss
and Clarke; 1978), i.e. the sole use of small intervals. It rather implies that notes
are glued together smoothly, and not made up of isolated elements or patterns, con-
catenated without care. For instance, the phrase in Figure 1.7 contains several large
intervals but is perfectly continuous.
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1 Bebop Virtuosity Explained 9
The One-Step-Max theorem

There is a factor that helps address the continuity challenge: the one-step-max the-
orem. The scales used in jazz (minor, major or diminished, in first approximation)
contain an interval of maximum 3 semitones (in the harmonic minor scale). Conse-
quently, any note is always within 1 semitone maximum (up or down) to a note of
any possible scale, i.e. a “good” note. We will see below how this theorem can be
used as a rescue mechanism when the basic generator fails to find a solution.

1.2.4 Playing Outside and Side-Slipping

The bebop language is deeply grounded in tonal harmony. However, like all lan-
guages, bebop evolves. One important development was caused by a paradoxical
force that pushes musicians to escape the constraints of harmonic satisfaction, once
they know how to satisfy them perfectly: playing out in jazz jargon. Playing out is
not to be confused with free jazz, a radical way to escape the laws of tonal harmony,
in which there are no more rules whatsoever. Playing out, in bebop, is a precisely
defined musical device whose mastery necessitates perfect control of the instrument.
The ability to play out “the right way” can be considered a sign of a complete mas-
tery of the art.

The main way to play out is called side-slipping (or side-stepping). Shim (2007)
dates the origin of side-slipping back to Art Tatum, an acknowledged piano virtuoso,
who “displayed his mastery of chromatic harmony by effortlessly floating in and
out of keys” (p. 183). A stepping stone of this evolution is probably the incursion
of modal improvisation in the jazz repertoire; with the famous tune “So What” by
Miles Davis, based on a long repetition of a D minor chord. To avoid a “tide of
boredom” due to this harmonic monotony, various techniques for escaping tonality
were invented, including side-slipping (Coker; 1984, p. 49).

Pedagogical definitions of side-slipping may be found in jazz theory books
(Coker; 1984, 1997; Levine; 1995), with some variations. Side-slipping is a de-
vice that produces a short sensation of surprise, in a context deemed too predictable
(Levine; 1995). The idea is to play out-of-key, with the goal of momentarily creat-
ing tension, and then come back to the right key, which can be different from the
starting key. Most often, the out-of-key segment uses symmetry. For instance, it can
be the same phrase transposed a semi-tone higher. The listening impression is de-
scribed by Coker (1984) is as follows: “Like the stretching of a rubber band, the
attuned listener seems to know that the player’s excursion into another key is very
temporary and that he will snap back to the original key when the tension period is
over. In the meantime, the listener has been taken on a brief trip that has broken the
monotony of modality.” Side-slipping was intensively used by pianists like Lennie
Tristano (Shim; 2007, p. 183), and many others (John Coltrane, Alan Holdsworth)
and is now a classical ingredient of modern improvisation.
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10 Frangois Pachet

Figure 1.4 shows a typical side-slip, given by Coker (1997, p. 50). The mechani-
cal dimension of the side-slip appears clearly: here a simple transposition of a 4-note
pattern one semitone up, and then down. Figure 1.6 shows a more complex example
of a side-slip produced backward in time, i.e. played before the non-transposed ver-
sion, creating an even more surprising effect (shocking, then deliciously soothing).
Note that such an effect would not work if played at low speed, as the time during
which wrong notes are played would be too long, creating a risk for the listener to
lose the sensation of tonality. As such side-slipping is not an ornamental device, but
a central feature of linear improvisation.

Side-sli % st
ce-slip up 72 step Side-slip down % step

D Dorian . l) I,_'_ » P ——
det e Db P deitle o
9 e —— |

Fig. 1.4 Example of a side-slip, given by Coker (1997, p. 50). Note how the first side-slip smoothly
continues in the “right key” (here, D minor).

There are many variants of side-slipping, notably concerning the device used to
produce the phrase out of key, its length, metric structure, etc. (Coker; 1997). For
instance, Figure 1.5 shows a diatonic side-slip invented by John Coltrane (and used
extensively e.g., on his improvisations on Giant Steps). This is a nice “trick”, or
rather a small theorem of tonal music: when a motive in some major key (say, F)
is transposed up 1 semitone, it is most of time in the initial key transposed 1 minor
third up (here, Ab7).

Diatonic side-slip up 1 semitone

. l;rlzp_b.ﬁ i

r £}
\ U

N

F Maj7 Ab7 Db Maj7

Fig. 1.5 A Diatonic side-slip invented by Coltrane. This particular side-slip is such that it actually
does not create any harmonic tension, as the transposed motif (up 1 semitone) stays, miraculously,
in the tonality (here, one minor third above).

The difficulty for improvisers is not only to produce the slide-slip, but to re-
establish continuity during the re-entrance phase. This necessitates tricky planning,
as the final notes of the transposed pattern are, usually, precisely out of key, so no
natural continuation may be in the musician’s hands.

We will see how our framework copes with side-slipping in a general way, by
allowing side-slips to be inserted smoothly in the generated chorus while keeping
continuity.
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1 Bebop Virtuosity Explained 11

Em D Cc7 Fmaj7

Fig. 1.6 A tricky example of a “reverse side-slip” by Al Di Meola in a chorus on Guardian Angel
(GuitarTrio; 1977). The two first phrases are transpositions, (2 then 1) semitones lower, of the last
one, which is in the right key, thereby creating a stunning resolution effect, only made possible by
speed (here, 184 bpm).

1.2.5 Virtuosity is to Improvisation what Running is to Walking

Virtuosity is about speed, but not only speed. Beyond speed — innate for computers
— virtuosity is the capacity to play inferesting phrases fast, and make them appear
as singular solutions to a difficult problem, much like a magician tirelessly extracts
rabbits from a shallow hat. Like running is not walking faster (Cappellini et al.;
2006), playing virtuoso phrases calls up cognitive skills and motor mechanisms that
differ from the ones used in standard improvisation, which consists basically of
paraphrasing the original melody (Baggi; 2001). In this view, virtuosity is a specific
improvisation mode, in which the musician deliberately chooses to enter and exit,
during his solo. Often, virtuoso passages constitute the climaxes of the chorus. This
is obvious in concert recordings such as the GuitarTrio (1977) in which virtuoso
passages (see Figure 1.7) are followed by enthusiastic rounds of applauses.

An important apparent characteristic of virtuosity in bebop is that the musicians
give an impression of precisely controlling their production, using some sort of
high-level inner commands. Such an impression is obvious when listening to the
effortless character of Art Tatum’s improvisations, which allow him to flow in and
out of harmonies with a total control on their high level structure. Indeed, the impro-
viser’s ultimate fantasy is probably not to produce but to control such a virtuoso flux
(Sudnow; 1978), through high-level mental commands. In short, to be the director
of one’s inner orchestra. How is this possible?

Fig. 1.7 A virtuoso passage (152 bpm) in a chorus by John McLaughlin on Frevo Rasgado (Gui-
tarTrio; 1977). Note the “smooth” chord transitions.
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12 Frangois Pachet

1.2.6 Claims

In this chapter, we make a number of claims. The main one is that we present a sys-
tem that generates virtuoso phrases of the same musical quality as the ones human
virtuosos produce. The validity of this claim is left to the appreciation of a trained
jazz listener, who can judge from the outputs (scores and videos) of our system,
Virtuoso, available on the accompanying web site.

The second claim is that we propose an operational answer to the virtuosity ques-
tion (how do they do that?), by introducing the notion of intentional score: the tem-
poral series of high-level musical decisions taken by the virtuoso to generate a cho-
rus. These decisions are arbitrary, and may be seen as the “/% magic” mentioned by
Levine in his introduction (see §1.2). This intentional score is the backbone for auto-
matically producing virtuoso phrases, and our system may be seen as an interpreter
of this score, which generates a chorus that satisfies it, i.e. Levine’s “99% stuff”.
We show through our various examples that this score suffices to generate virtuoso
phrases of high quality. All the decisions in the intentional score are done at the beat
level (and not at the note level), i.e. at a low frequency, thereby substantially reduc-
ing the cognitive load of rapid note-level decision making. This explains how the
by-pass of high-level cognitive decision-making may be operated in practice (see
§1.1.2).

Most importantly, we show how human jazz improvisers have contributed, at
least in two respects to inventing the bebop style (and its extensions) thanks to virtu-
osity. The two features we focus on are only possible thanks to extreme virtuosity:
(1) side-slips and (2) fine-grained control. We describe and interpret these two major
contributions to style invention in the context of Markov-based music modeling.

After a review of the state-of-the art in jazz modelling, we describe a Markov-
based model of jazz improvisation and show that it is well adapted to generate
melodies that fit with arbitrary chord progressions. We then use this basic model
to state and solve the two main issues of jazz generation: control and side-slips.

1.3 Modelling Jazz Improvisation Generation

Many studies have addressed music composition and improvisation, so we focus on
those specifically addressing jazz. As is often the case in computer science, these
studies follow the general algorithmic trends of the moment. We handle separately
the case of Markov modelling as this is the core of our proposal.

1.3.1 Non-Markovian Approaches

Ulrich (1977) proposed an all-encompassing system that performs chord sequence
analysis and chorus generation using a purely algorithmic approach, reaching a rea-
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1 Bebop Virtuosity Explained 13

sonable level of musicality. Walker (1997) and Thom (2000) built interesting sys-
tems emphasising the dialog dimension of improvisation rather than the musical
quality. A more ambitious case-based reasoning approach was proposed by Ra-
malho and Ganascia (1994), emphasising the role of motivic components, and fol-
lowing the “knowledge level” paradigm. This approach proposes to explicitly recon-
struct a cognitively plausible model of a working jazz memory, and was applied to
the automatic generation of bass lines, yielding some interesting outputs, favourably
compared to Ron Carter’s samples (Ramalho; 1997). It relied on a manually entered
set of cases, limiting its scope in practice. Genetic algorithms have been used for
music generation by a number of researchers (Weinberg et al. (2008); Backman and
Dahlstedt (2008); Papadopoulos and Wiggins (1998)), yielding real time systems
used in concert, and producing interesting improvisation dialogs, like in the Gen-
Jam system of Biles (1994). These systems, again, apply a general paradigm (here,
evolutionary algorithms) to chorus generation in a top-down approach, without con-
cern for harmonic satisfaction and continuity. Their outputs, although sometimes
spectacular, are still below the level of professional musicians, and do not display
particular virtuosity. Interestingly, the system described by Grachten (2001) was
used as a basis for studying jazz expressivity in saxophone solos (Ramirez et al.;
2008). The studies described in Hodgson (2006), also use genetic algorithm but fo-
cus on detailed characteristics of the Charlie Parker style. Notably, Hodgson shows
the importance of dyadic (two-note) patterns in the elaboration of Charlie Parker’s
melodic repertoire. But the use of random generation, intrinsic to evolutionary algo-
rithms, here also, gives results of varying quality, necessitating manual editing (the
author describes the results as “partially correct”). Note that manual editing echoes
the approach of Harold Cohen with his Aaron panting program (McCorduck; 1991),
as well as that of David Cope (1996), who use partial manual editing to finish their
compositions. We will see below how we substitute manual intervention by inten-
tional controls, and the implication on our models.

Probabilistic grammars were used by Keller and Morrison (2007) to generate jazz
improvisation. The outputs of their system “compare favourably with those played
by college-level jazz students of at least an intermediate playing level, if not better.”
The grammar rules are manually encoded, and based on an explicit representation
of note harmonic status (chord tone, passing tones, etc.). Note-level information
is required when teaching improvisation, but we do not think they are necessary
for generating improvisation. As we will see, we adopt an approach in which this
information is not represented explicitly. However, our generated phrases do contain
a natural blend of, e.g. chord tones and passing notes. Note-level characteristics
naturally emerge from the generator, rather than being prescribed by the system.

Franklin (2006) showed that recurring neural networks could learn entire songs
given a melody and the associated chord sequence, and produce new improvisations
on these chord sequences. This system demonstrates that non-symbolic approaches
can capture some of the knowledge of jazz musicians, but the results shown are also
college-level.

Side-slipping is briefly mentioned as a possible composition operation in the Im-
proVizor system (Keller et al.; 2005), but the process and more generally the devices
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14 Frangois Pachet

for playing out-of-key “the right way” have not yet been the subject of modelling in
improvisation generation studies. Finally, it can be noted that commercially avail-
able software like Band-in-a-box (PG Music), or the Korg Karma™ family of syn-
thesisers produce reasonable improvisations in real time, over arbitrary harmonic
constraints, using algorithmic approaches. These systems may produce musically
interesting outputs, but their analysis is difficult because of a lack of published tech-
nical information.

1.3.2 Markov Chain Approaches

Other approaches to jazz improvisation based on Markov chains have been explored
recently, showing notable success. These systems follow a long tradition in com-
puter music modelling, dating back to the works of Shannon on information theory
(Hiller and Isaacson; 1958; Brooks and Wright; 1957). Markov processes are based
on the “Markov hypothesis” which states that the future state of a sequence depends
only on the last state, i.e.:

p(silst,...,sio1) = p(silsi—1) (1.1)

Extensions to higher orders as well as variable-orders (Ron and Tishby; 1996)
do not change substantially the basic principle of Markov generation. The Markov
hypothesis, in all its forms, can be seen as a concrete implementation of Longuet-
Higgins’s memoryless assumption (see §1.2).

The Markovian aspects of musical sequences have long been acknowledged, see
e.g. Brooks and Wright (1957). Many attempts to model musical style have therefore
exploited Markov chains in various ways (Nierhaus; 2009), notably for sequence
generation.

Many experiments in musical Markov models have shown that there is indeed
a strong Markovian dimension in musical surface in most genres of tonal music,
including jazz (see e.g., Nierhaus (2009) for a survey). The Continuator system
(Pachet; 2003) was the first to propose a real-time improvisation generation system
based on Markov chains, producing sequences as continuations of input sequences
played by humans. This system was shown to deliver striking results, even passing
“jazz Turing tests” (Van Veenendaal; 2004).

Most Markov generators are based on a random walk process, exploiting a prob-
abilistic model of the input phrases. The generation is performed step-by-step, in
our case, note by note, using a random draw scheme, which takes into account the
context, i.e. the phrase generated so far:

Iteration at step i:
next = Random_Draw(context;);
contextiy := Concatenate(context;,next);

In practice, the context is limited to a certain maximal order. Random choice is
performed as a weighted random draw, using an efficient representation of all en-
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1 Bebop Virtuosity Explained 15

countered suffixes computed from the training set, which yields a probability table.
The generated event is then concatenated to the context, and the process is iterated.

It has been shown that this model enables the creation of realistic outputs in many
musical styles, with professional musicians (Pachet; 2003; Assayag and Dubnov;
2004) as well as children (Addessi and Pachet; 2005). Like previous approaches,
these systems use a general, agnostic algorithm, uniformly applied to music se-
quences of any style. Consequently, the qualities of its outputs are also independent
of the style of its inputs, and uniformly good ... or bad. However, it should be noted
that these systems perform best in musically unconstrained contexts, such as free-
form improvisation. No convincing results were obtained when used in a bebop
setting with the constraints we have introduced in the preceding section.

Random walk approaches have shown limitations when used for generating com-
plete pieces as this strategy does not always favour the most probable sequences in
the long term (Conklin; 2003). This is not an issue in our case, as we will see how
the generation can be controlled using higher-level controls that determine global
characteristics of the generated sequences, taking precedence over the details of the
basic generation algorithm. Indefinite memory length is the main claimed advantage
of the system proposed by Assayag and Dubnov (2004). In our context, this problem
is irrelevant, as our goal is not to reproduce similar pieces, but to use the training
samples to generate novel melodies in a highly constrained context. We consider a
variable-length generation model, but, following Hodgson (2006), we restrict our
maximum length to 2, an intentionally short value, which ensures an optimal com-
promise between similarity and creativity.

Another problem is related to the case where no solution is found (NSF here-
after). This happens when the context has not been encountered in the training phase.
This problem, known as the zero-frequency problem has been addressed by many
researchers in Markov modeling (see e.g. Chordia et al. (2010)), with no general
solution. Here again, we favour an approach based on the observation of bebop
practice, and propose a bebop-specific, simpler solution, described below.

1.4 A Note-Based Jazz Generator

The basic engine in our proposal is a variable-order Markov chain generator, with a
maximum order of 2. This generator, described in the preceding section, is able to
yield the “next” note, given the last 2 notes (at most) already played. Our experience
has shown that augmenting the memory length does not improve the quality of the
generation.
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16 Frangois Pachet

1.4.1 Pitches for Representation, Beats for Generation

All major decisions for generation are taken at the beat level, and constitute in fine
the intentional score, which is a temporal sequence of beat-level decisions. These
decisions are the following.

At each beat, a rhythm is chosen (arbitrarily in the first approximation) within the
5 possibilities described in Figure 1.3. This rhythm in turn determines the number of
notes to produce for the beat (in our case, 1, 2, 3, 4 or 6). Consequently, there is no
need to use durations as training data, as these durations are entirely determined by
this rhythm choice. The velocities of each note are the velocities played in the train-
ing corpus (see below). No harmonic information is used in the training phase either,
as the model used for generation is chosen, for each beat, according to the current
chord, as described below. Higher-level attributes such as pitch contour, chromatic-
ity, etc. are handled yet at another level as described in §1.5.2. Consequently, the
representation used for the Markov model is based solely on pitch, reducing this
basic mechanism to a simple one.

The justification for this choice is based on a long experience with Markov mod-
els for jazz, which convinced us that pitch is the only dimension of music that is
well captured. Although other dimensions can technically be represented as such, it
does not make much musical sense. There are two main reasons for this: firstly, only
intrinsic attributes, by definition, are well adapted to Markov modelling. Pitch is an
intrinsic attribute, but not rhythm, which emerges from the relation between adjacent
notes or events. Second, there is no concrete evidence that modelling higher-level
dimensions (harmony, pitch contour, etc.) yields interesting musical material, as
these dimensions are correlated to each other in intricate and complex ways, raising
the “viewpoint problem” that inevitably leads to ad hoc solutions and compromises.
In some sense, the situation is comparable to the multiple inheritance problem in
object-oriented languages (Stein; 1992): it works well when there is no conflict, but
all the solutions proposed to solve the problem in the general case failed and were
progressively abandoned.

1.4.2 Handling Harmony

There are several ways to consider harmony in a Markovian context. One of them
is to consider harmony as a specific musical dimension, and use it as a viewpoint.
This approach is followed for instance by Conklin and Witten (1995) or Cont et al.
(2007). As discussed above, simultaneously handling several viewpoints creates
viewpoint interaction problems that do not have general musically meaningful so-
lutions. Furthermore, it introduces unnecessary level of complexity in generation.
In our case, we can observe that chord changes in bebop never occur within a beat
(they usually occur at the measure of half-measure level, sometimes at the beat,
never within a beat). Hence our solution is simply to use chord-specific training
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1 Bebop Virtuosity Explained 17

databases, which are selected at each beat according to the underlying chord se-
quence.

More precisely, we use a simple set of chord/scale association rules. Such rules
can easily be found in jazz theory text books, e.g. Aebersold (2000). For each chord
type appearing in a chord sequence, we select the Markov model which corresponds
to a particular “scale”. Using various substitution rules, it is easy to reduce the num-
ber of needed scales to a much smaller number than the number of chords. A drastic
reduction is proposed by Martino (1994) who uses only minor scales throughout
all chord sequences, using clever chord substitutions (e.g. C 7 chord uses the G
minor scale, C altered uses the G# minor, C maj7 uses A minor, etc.). Although
the Martino case is easy to implement (and is available in our repertoire of styles)
we follow here a more traditional approach, and propose five scales: major, minor,
diminished, seventh and whole tone (for augmented chords). As a consequence, we
only need training data for these five scales, in a single key (C). The databases for
the other keys are simply transposed from the ones in C.

selectHarmonicDatabase (chord)
if chord is major, major 7, major 6 then return MajorDB;
if chord is minor, minor 7, minor 6 then return MinorDB;
if chord is half diminished then return HalfDimDB ;
if chord is 7 altered then return SeventhAlteredDB ;
if chord is augmented 5 then return WholeToneDB;

Fig. 1.8 The selection of a harmonic database according to the current chord.

Many variations can be introduced at this level, such as chord substitutions (see,
e.g., McLaughlin (2004)). These can be typically performed at random, or according
to any other parameter (e.g. user controls), and belong naturally to the intentional
score. An important aspect of this method is that it is independent of all other pa-
rameters of the system, and notably does not necessitate an explicit memory of the
past.

Here again, our solution is analogous to the way humans improvisers practice
and improvise, as illustrated by the huge literature proposing training scales and
patterns.

Changing Markov databases at each beat also creates a potential problem with
regards to continuity: how to ensure that phrases evolve continuously during chord
changes? It turns out that there is again a simple solution to chord change negotia-
tion, which does not necessitate modifying the generation algorithm, but consists of
carefully choosing the training corpus. In cognitive terms, this amounts to train to
the point that all possible chord changes have at least one solution.

Let us consider several cases in turn, to illustrate the Markov process. We start by
a training sequence in the key of A harmonic minor consisting of a scale played up
and down (Figure 1.10). Using our generator, we can produce phrases in all minor
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18 Frangois Pachet

GenerateBeat (context, i) // context = the last generated output
RP := chooseRhythmPattern ;
H := selectHarmonicDatabase (i chord);
segment := new empty segment;

Repeat N times (N = number of notes in RP)
next (H) = Random_Draw (H, context);
segment := Concatenate (segment, next) ;
context := Concatenate (context, next) ;
return segment with rhythm

Fig. 1.9 The basic GenerateBeat function integrates all musical decisions. N is the number of notes
per beat, H is the harmonic context, which determines the Markov model to be used. H is constant
during the beat.

keys like the one illustrated in Figure 1.11 (still in A minor). Other keys are handled
simply by transposing the input sequence.

Fig. 1.10 A minor scale played up and down, used as the sole training phrase.

By definition, the generated phrases will all be Brownian, in the sense of Voss and
Clarke (1978). This is caused by the fact that each pitch (except for the extremes)
has only two possible continuations — one above and one below — in the diatonic
scale used for training.

Fig. 1.11 A phrase generated by the Markov generator from the unique training phrase of Figure
1.10. Phrases generated by diatonic scales are all Brownian by definition.

1.4.3 Chord Change Negotiation

Let us consider now a chord sequence based on alternating between A minor and
A# minor. We deliberately choose A# minor as this key is “far away” from A minor,
and therefore harder to “negotiate”, because these two scales share only a few notes.
Figure 1.12 shows an example of a phrase generated on this sequence. We notice that
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1 Bebop Virtuosity Explained 19

there are two NSF cases. They correspond to situations in which the last note of a
phrase for a given chord does not exist in the training phrase for the next chord.
Here, C# does not exist in the training base for A minor (first case), and B does not
exist in the training base of A# minor, by definition of the harmonic minor scale.

A min A# min A min A# min

Fig. 1.12 A phrase generated on top of an alternating A min / A# min chord sequence, using
the single ascending/descending A minor scale as training phrase. Note the two cases where no
continuation is found to negotiate the chord changes (indicated by an arrow).

Contrarily to general approaches to the zero-frequency problem, we propose a
musically justified solution with the two following arguments:

1. We reduce the number of NSF cases by carefully choosing the training corpus,
as detailed in the next section. This step corresponds to human training,

2. In the remaining (rare) cases no solution is found, we use a simple heuristic based
on the one-step-max theorem (see §1.2.3.2): since there is always a “good note”
at a maximum pitch distance of one semitone, we try both and select the one that
work, and we are guaranteed that there is always one.

This double solution turns out to work nicely. It can be seen in Figure 1.12 that
in both NSF cases, the system chooses the right notes a semitone apart to fit with
the harmony. The resulting phrase sounds smooth and continuous as if nothing had
happened: it is virtually impossible to notice that the generated phrase is locally
not Markovian. Furthermore, the system can easily produce a report after a series
of improvisations, to suggest adding a training phrase containing the NSF cases en-
countered. In our case it could suggest the musician/system to practice/add phrases
in A minor containing a C# or an A# (i.e. B in A# minor, once transposed in A): an
interesting case indeed, which forces the use of chromaticisms or passing notes in
a clever fashion. Figure 1.13 shows a more complete example on a succession of
chromatically ascending minor chords.

It is interesting to note that this approach to the NSF problem corresponds to the
pedagogical strategy proposed by Pat Martino (1994): learn only one scale (minor),
but learn how to use it on any chord change to another minor chord. This implies
practicing over 12 possible changes from one minor scale to another one, in all keys,
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20 Frangois Pachet

so a total of “only” 132 cases from which any chord sequence can be smoothly ne-
gotiated (Pat Martino proposes a solution to substitute any chord by a minor chord,
see §1.4.2).

Other strategies could be used, such as simply finishing the phrase. However, this
kind of heuristic gets in the way of our modelling goal: the decision to stop or end a
sentence is a “high-level” one that should not rely solely on such low-level technical
considerations, but only on the musical intention of the musician.

Fig. 1.13 A generation using only the harmonic scale as training base, on a succession of minor
chords progressing one semitone up. NSF are indicated at chords #3, #4, and #7.

This mechanism produces phrases which satisfy local harmonic constraints,
chord negotiation and continuity. However, the phrases wander up and down ac-
cording to chance, and there is no direct means of controlling their structure. In
some sense, this represents fechnical virtuosity (the ability to play fast), but not con-
trolled virtuosity (the ability to play what you want). This most important issue is
addressed in §1.5.2.

1.4.4 An Example Training Set

Obviously the choice of training phrases is crucial to the generation, as only these
phrases are used to build the improvisation. Experiments using inputs entered in
real time are problematic as errors cannot be corrected once learned by the system.
Markov models have not been used, to our knowledge, in a controlled setting for
jazz improvisation. Here again, the particular context pushes naturally to a careful
selection of training patterns, like human improvisers do when they practice. But
which phrases are the right phrases?

The example given above suggests a constraint on the training phrase: to ensure
continuity (and avoid NSF cases), each Markov model should contain all pitches.
This is a sufficient condition, by definition, but not a necessary one. Our repair
strategy handles graciously the cases where no solution is found. Other more subtle
constraints can be deduced from the desired nature of the improvisations to gener-
ate, dealing with longer patterns. For instance, the density of the Markov network
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1 Bebop Virtuosity Explained 21

determines the nature of the generated phrases: the more choice there is for a single
note, the more possibilities there are for controlling the phrase. If a single note has
only one possible continuation, there is a risk of producing repeated patterns when
reaching this particular note. Note that this is a current situation with human play-
ers, who sometimes learn only a small number of escape solutions, when reaching
particular notes or passages (on guitar, this is often true for notes played in the top
of the neck). A static analysis of the Markov model can reveal such bottlenecks, and
be used to suggest new phrases to learn to create new branching points.

To illustrate the generation of phrases from the training phrases, we describe
a part of a Markov model, specifically designed to represent a “classical” bebop
player, with no particular stylistic influence. We give here the complete set of
phrases used in the minor scale. These phrases are played in the key of C, and then
transposed in the 11 other keys. The interested reader can find the corresponding
database for the other scales in C (major, diminished, seventh and whole tone) on
the accompanying web site. These other databases are similarly transposed in the
12 keys.

The following six phrases were designed (by the author) to contain basic ingredi-
ents needed to produce interesting jazz melodies in C minor. Of course, they do not
contain all the patterns of this style, as this would be an impossible task, but they
can be enriched at will. As can be seen, not all pitches are present in the database
(at least for all octaves). This is intentional to show how the mechanisms we present
here interact with each other.

Fig. 1.15 Phrase #2 in C minor.

—
—

Fig. 1.16 Phrase #3 in C minor.
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Fig. 1.17 Phrase #4 in C minor.
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Fig. 1.18 Phrase #5 in C minor.
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Fig. 1.19 Phrase #6 in C minor.

Figure 1.20 shows a phrase generated on a chord sequence consisting only of a
C minor chord. The various segments of the training phrases are indicated, showing
how Markov generation creates a new phrase by concatenating bits and segments
taken from the training set.

Figure 1.21 shows a phrase generated on the chord sequence C /B 7— E min /
F# 7 — B maj7, using the training phrases in minor, major and seventh in several
keys. The NSF cases and the segments reused are indicated. The phrase produces a
perfect sensation of continuity, and the harmony is locally satisfied. Other examples
can be found on the accompanying web site.
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Fig. 1.20 A phrase generated on a C minor chord sequence. The compositions of the segments of
the training phrases are indicated by overlapping boxes. Segments of length 2 to 7 are being used
in this case. Training phrases #2 to #6 have been used. No NSF case is encountered.

Cmin B7 E min F#7 B maj7

Fig. 1.21 A phrase generated on the sequence C min /B 7 — E min / F# 7 — B maj7. Two NSF
cases were encountered, indicated by an arrow (and non-overlapping boxes): for the C min — B7
transition, and for the F#7 — B maj7 one. They were addressed using the one-step-max theorem.
The discontinuity is not musically perceptible by the author.

1.5 Escaping Markovian Boredom

Once we have established the basis for generating melodies that comply with the
rules of the game, we can now describe how to model the two important innova-
tions that bebop has introduced in jazz. These two innovations relate to boredom:
producing phrases that satisfy the criteria we have described is pleasing, but may
lead to boredom after repeated exposure. From a computer science perspective, we
call “Markovian Boredom” the sensation that the phrases generated all come from
the same set of rules, grammar, and that, eventually, there is no hope of hearing
something new, striking, outstanding. From there on, boredom follows irrevocably.
As described in the introduction, two devices have been invented by jazz musi-
cians to escape boredom. These devices have in turn contributed to changing the
style itself. We describe here how these two devices can be modelled in our Markov
framework, the issues they raise technically, and how they can be addressed.

1.5.1 Side-Slips and Formal Transforms

The model we have introduced so far generates notes streams on arbitrary chord
sequences, which are continuous and satisfy local harmonic constraints. In the ex-
amples shown here, we use a limited training material (about six phrases for major,
minor and seventh, three phrases for diminished and whole-tone, used in particular
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for augmented chords). More scales can be added easily (to deal with rarer chords
like altered, or minor diminished 5"*), but adding more scales or training sequence
does not improve substantially the quality of the generation.

It turns out that playing out can be easily integrated in our framework. As we
have seen, playing out or side-slips may be considered as an excursion from the
tonality to another one, followed by a smooth landing to the right tonality. More
generally, we can consider side-slips as specific formal transforms, operating on,
e.g., the last generated phrase. Formally, side-slips can be introduced as yet another
case in the GenerateBeat() method introduced in section 1.4.2:

GenerateBeatAsTransform (context, H, i):
// context represents the last generated output
return Transform(context, N)

where Transform is defined for each possible transform, e.g.:

Transform (phrase, N)
return Transpose (phrase, N, 1) ;

The particular side-slip consisting in transposing the last phrase one semitone
up, can simply be represented by a transform operation, taking a phrase as input and
producing its transposition. Other reasonable bebop transforms include:

e Transposing a semitone, a minor third, a tritone or an octave up or down,
e Reversing then transposing a semitone up or down, as illustrated in Figure 1.22
(4" case).

Transforms can also be used to implement many fricks invented by bebop improvis-
ers, such as transposing diatonically the phrase, by taking into account the harmony
of the next beat (see the Coltrane or DiMeola examples in §1.2.4).

A most important aspect of formal transforms is the landing strategy: How to
come back seamlessly to the original tonality? Our Markov framework provides
the landing strategy for free: transforms may produce notes which are out-of-key,
but the various strategies we proposed for negotiating chord changes can be used
readily to ensure a smooth return to the key. As an example, Figure 1.22 shows a
phrase generated on chord sequence composed only of A minor chords.

The decision to use a formal transform, again, belongs to the intentional score,
i.e. is taken at the beat level. In the case of a purely automatic improvisation system,
this decision can be determined by musical heuristics, such as the following:

e When a chord is used for a long time, e.g. more than 1 measure (the original
reason for the introduction of side-slips in the first place),

e When a NSF case is encountered (thereby avoiding the use of a repair mecha-
nism),

e When a direction is imposed (e.g., go up pitch wise) but no easy way to satisfy it
is found (see §1.5.2 on control below).
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Fig. 1.22 A chorus generated on an A minor sequence. Formal transforms are triggered randomly
during the chorus, as indicated. Note, and hear, the smooth landings on the A minor key following
the transforms, in particular the striking effect produced by the third transform (reverse-1).

It is important to stress out that transforms are grammatical constructs, and as such
cannot be learned effectively using any Markov mechanism. Using phrases such
as the licks in 4 as training phrases for the corresponding scale (D minor) would
blur the very notion of harmony, as notes from the side-slips would be considered
as equivalent to notes from the original key. Furthermore, such an approach would
require a tremendous amount of training data (for each possible pattern, and each
possible side-slip). More importantly, it would then be impossible to trigger inten-
tionally decisions to produce, or not, these side-slips.

1.5.2 The Control Issue

Above all, virtuosos can be seen as exceptional humans in the sense that they seem
to exert full control on their production. The control issue is both the most difficult
and the most interesting one to handle.

We can state the control problem as follows: how to generate a sequence that
fits an arbitrary criteria, defined by target properties of the next generated phrase?
In our context, such properties can be defined in terms of phrase features such as:
pitch (go “higher” or “lower”), harmonic constraints (“more tonal notes”), intervals
(chromatic), direction (ascending, descending), arpeggiosity, etc. Allowing such a
level of control in our system is key to producing phrases with musically meaningful
intentions.

The difficulty in our case comes from the fact that the generator operates on
a note-by-note basis, whereas most criteria useful in practice operate on complete
phrases. Let us suppose, for instance, that we want the next generated phrase to be
“higher” in pitch than the current one. It does not suffice to simply choose, at the
note level, the next note with the higher pitch. Such as policy has been proposed in
(Pachet; 2003), and works well for simple harmonisation tasks, but not here, as we
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want the pitch criteria to hold on an entire next phrase. For instance, a good strategy
could consist in first choosing a lower pitch and then playing an ascending arpeggio.
So longer-term planning is needed to find satisfying, let alone optimal, phrases.

In a Markovian context, control raises a fundamentally difficult problem, because
control goes in the way of the basic Markov assumption (see §1.3.2). Indeed, control
consists precisely in establishing properties to be satisfied not on “the next item”
to play, but on the next sequence of items. Unfortunately, the Markovian view of
sequence generation is that the future in only determined by the current state (or the
N last current states, depending on the chosen order).

We have addressed this problem from a fundamental perspective, and proposed
in (Pachet and Roy; 2011) a general solution to generate Markov sequences satisfy-
ing arbitrary properties. This solution consists in reformulating Markov generation
not as a greedy algorithm, but as a constraint satisfaction problem (Freuder; 1994).
Constraint satisfaction is a powerful technique that enables the fast exploration of
large search spaces. In our case, controlling a Markov sequence amounts to explor-
ing the space of all possible sequences of length N (in our case, N is the number of
notes per beat). This space can be huge as soon as the training set is large, or the
length of the sequence to generate is high.

In this section we illustrate how controlled Markov generation can be used to
influence the generation in real-time using meaningful musical criteria. Any criteria
can be defined to control sequences, as long as they are computable. We present
here a case in which the criteria are scalar values computed from a given sequence
with simple features, but this scheme can be extended to more complex algorithms,
classifiers in particular, as discussed below.

In a first phase, a set of melodic features are defined, such as:

e Mean pitch of a sequence,
e Mean interval of a sequence,
e Tonalness of a sequence.

Tonalness is a scalar value € [0, 1] and gives an indication of how tonal is a melody
with regards to the corresponding chord in the sequence. It can be computed using,
e.g., a pitch profile algorithm (Krumhansl; 1990).

The next step is to substitute the generation of a beat by the corresponding con-
straint satisfaction problem, as described in (Pachet and Roy; 2011).

We illustrate the mechanism as follows. We start by a phrase played on an A
minor chord (24). We then generate three beat continuations to fill up a four beat
measure (still in A minor in our case; changing the harmony has no impact on the
control issue). We select the ones maximising criteria we consider useful as controls:
higher/lower pitch, more/less chromatic, and less tonal. Figures 1.24 to 1.28 show
continuations which optimise these five criteria, as confirmed by the values of the
features. These values are compared to the initial 4-note phrase values, i.e.:

e Mean pitch: 59.5;
e Mean interval: 2.33;
e Tonalness (in the key of A minor): 1.0 (all notes in A minor)
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GenerateBeatMoreThan (context, H, I, BiasCriteria, startValue):
// context represents the last generated output

State the generation problem as a CSP

Compute one solution according to

the time left that optimises the criteria

Fig. 1.23 The method for generating a beat according to a bias. We use the approach described
in (Pachet and Roy; 2011). The criteria is optimised depending on the time available (using an
anytime approach).
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Fig. 1.24 The starting 4-note phrase is in the box. Here, a continuation with “higher pitch” (mean
pitch =78.5 > 59.5).

» g
et if =
e = —

"

|

0
1

1
kel

;i"l' ’ Rt ‘ ' K g

wi

Fig. 1.26 A “more chromatic” continuation (mean interval = 0.666 < 2.33).
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Fig. 1.27 A “less chromatic” continuation (mean interval = 2.33). Note the large intervals.
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Fig. 1.28 A “less tonal” continuation (fonalness = 0.66 < 1.0). Note the Gb and Eb.
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It is important to note that this control mechanism is independent from the other
mechanisms introduced here, notably formal transforms. Figures 1.29 and 1.30
show a combined use of transforms and controls on the chord sequence of Figure
1.7. It can be checked that indeed the generated phrase do satisfy all the criteria.
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Fig. 1.29 A phrase generated with an intentional score consisting of “chromatic” for the first six
beats, and “arpeggiated” for the next six on the same chord sequence, and one random transform.
The melody generated fits almost perfectly the constraints.
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Fig. 1.30 A phrase generated on the chord sequence as Figure 1.7, with three intentionally chosen
side-slips and three subjective biases.
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1.5.3 Reusing Intentional Scores

The intentional score is the collection of all decisions taken for each beat. As we
have seen above, these decisions concern (1) the choice of the rthythm pattern, (2)
the choice of the scale (and hence, of the Markov database), (3) the decision to use
and the selection of a formal transform, (4) the decision to control the generation
with a specific criteria, and (5) the decision to start or stop the phrase. This score
is a time line with commands at every beat. An improvisation can be seen as an
interpretation of this score.

The intentional score represents the “arbitrary” portion of chorus generation, so
it cannot be generated automatically. In practice, it can be set randomly, or using an
interface, e.g. gestural to produce the various commands in real time, as described
in the next section

An interesting application of of concept of intentional score is to induce such
an intentional score from an existing chorus, to generate a new improvisation with
the same structure. We illustrate this idea using the chorus shown in Figure 1.7.
Of course, there is not a single way to infer the intentional score used by John
McLaughlin. The score we consider uses solely “target pitch” subjective biases,
extracted from the actual mean pitches of the various beats in John McLaughlin’s
phrase. It looks as Figure 1.31:

Start
TP:61 TP:67 TP: 72 TP:75 TP:76 TP:79 TP:82 TP:80 TP:75 TP:69 TP:65 Stop

Fig. 1.31 A possible intentional score inferred from the phrase of Figure 1.7. TP denotes the mean
MIDI pitch for each beat.

This score can be used to generate the phrase illustrated in Figure 1.32. It can
be seen that the resulting phrase follows approximately the same pitch contour. The
phrase is not the same, as it uses only the note patterns of our training set, but it
gives an indication of how to exploit intentional scores in a creative way.

1.6 Virtuoso: A Virtuoso Enabling Interactive System

Virtuoso is an interactive musical system that implements the ideas presented here
so that a user can experience the sensation of being a virtuoso, without having to be
one himself. Virtuoso is a jazz chorus generator that is controllable in real-time using
arbitrary input controllers. The main features we have introduced that account, from
our point of view, for a substantial part for the virtuoso aspects of jazz (side-slips
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Fig. 1.32 A phrase generated on the same chord sequence as Figure 1.7, with the intentional score
induced from John McLaughlin’s chorus in Figure 1.31, consisting only of target pitches at every
beat, as indicated.
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and high-level control) are mapped to various gestural controls, including start, stop,
speed (number of notes per beat), side-slips, as well as several criteria to control the
generation as described in §1.5.2.

Several videos (Virtuoso; 2011) show the author using the system, as well as in-
tentional scores deployed during the improvisation. A number of experiments were
conducted with jazz pianist Mark d’Inverno. An a posteriori analysis of the ses-
sion by the two musicians playing is provided. Although subjective, these analysis
show that a sense of playing together was achieved, and the music generated by the
system, controlled by a human, was of professional-level quality.

1.7 Discussion

The major claim of this study is that all important decisions concerning virtuoso per-
formance in jazz can be taken at the beat level instead of note-level. This explains
how virtuosos improvise melodies satisfying so many difficult and contradictory
constraints at high speed. By delegating the choice of individual notes within a beat
to a non-conscious, sensory-motor level, they have enough time to focus on high-
level decisions, such as influencing pitch contour, chromaticity, tonality, etc. Con-
cerning the memoryless assumption hypothesised by Longuet-Higgins (see §1.2.1),
we invalidate it because of side-slips, which require the memory of the last phrase
played. However, the cognitive requirements remain minimal. In some sense, most
of the work is done by the fingers.

Conceptually, we do not consider Markov models as representations of musi-
cal ideas, but as a texture that can be controlled to produce meaningful streams of
notes. The mechanisms we propose (transforms and controls) turns this texture into
realistic, sometimes spectacular, virtuoso improvisations.
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Concerning the relation of virtuosity studies to creativity studies, we have stressed
the importance of two important dimensions of jazz improvisation (side-slips and
fine-control) that are made possible only by extreme virtuosity. We have shown how
to model these two aspects in a Markovian context. The first one (formal trans-
forms) does not raise any difficult modelling issues. The second one (control) does,
and induces a very difficult combinatorial problem. How human virtuosos solve this
problem in real-time remains a mystery. It forms important future work for virtuos-
ity studies.

Running is not the only locomotion mode of animals. Likewise, virtuosity is not
the only mode of jazz improvisation. Our system is in fact a brittle virtuoso: it knows
how to run, but not so well how to walk. Such brittleness was pointed out by Lenat
and Feigenbaum (1991) in the context of expert-systems and attributed to a lack
of common sense knowledge. A musical common sense is indeed lacking in most
automatic systems, and much remains to be done to build a completely autonomous
jazz improviser exhibiting the same level of flexibility as humans: a competence
in virtuoso mode as well as in other modes, and the ability to intentionally switch
between them. Slow improvisation, in particular, is a most challenging mode for
cognitive science and musicology, as it involves dimensions other than melody and
harmony, such as timbre and expressivity which are notoriously harder to model.

However, considering melodic virtuosity as a specific mode, we claim that these
automatically generated choruses are the first ones to be produced at a professional
level, i.e. that only a limited set of humans, if any, can produce. A claim we leave to
the appreciation of the trained listener.

More generally, this chapter is an invitation to elevate virtuosity to a field of study
for cognitive science and computer science. Its links to creativity have only been
sketched here, but they are undoubtedly deeper and yet, unexplored. Understanding
virtuosity is a key to understanding creativity, in humans and with machines.
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