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Abstract

Markov processes are widely used to generate se-
quences that imitate a given style, using random walk.
Random walk generates sequences by iteratively con-
catenating states to prefixes of length equal or less than
the given Markov order. However, at higher orders,
Markov chains tend to replicate chunks of the corpus
with a size possibly higher than the order, a primary
form of plagiarism. The Markov order defines a max-
imum length for training but not for generation. In the
framework of constraint satisfaction (CSP), we intro-
duce MAXORDER. This global constraint ensures that
generated sequences do not include chunks larger than
a given maximum order. We exhibit an automaton that
recognises the solution set, with a size linear in the size
of the corpus. We propose a linear-time procedure to
generate this automaton from a corpus and a given max
order. We then use this automaton to achieve gener-
alised arc consistency for the MAXORDER constraint,
holding on a sequence of size n, in O(n.T") time, where
T is the size of the automaton. We illustrate our ap-
proach by generating text sequences from text corpora
with a maximum order guarantee, effectively control-
ling plagiarism.

Introduction

Markov chains are a powerful, widely-used technique
to analyse and generate sequences that imitate a given
style (Brooks et al. 1957; Pinkerton 1956), with applications
to many areas of automatic content generation such as mu-
sic, text, line drawing and more generally any kind of se-
quential data. A typical use of such models is to generate
novel sequences that “look™ like or “sound” like the origi-
nal.

From a corpus of finite-length sequences considered as
representative of the style of an author, a Markov model of
the style is estimated based on the Markov hypothesis which
states that the future state of a sequence depends only on the
last state, i.e.:

p(sitalst, .- si) = p(sitalsi).
The equation above describes a Markov model of order 1.
The definition can be extended to higher orders by consider-
ing prefixes of length k greater than 1.
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P(Siﬂ\sl, ) p(3i+1|3ifk+17 ey 8i).

In theory, higher order Markov models are equivalent to
order 1 models. However, in practice, higher order models
offer a better compromise between expressivity and repre-
sentation cost. Variable order Markov models are often used
to produce sequences with varying degrees of similarity with
the corpus (Begleiter, El-Yaniv, and Yona 2004). Indeed, in-
creasing the Markov order produces sequences that replicate
larger chunks of the original corpus, thereby improving the
impression of style imitation.

However, it has also been long observed (Brooks et al.
1957) that increasing the order tends to produce sequences
that contain chunks of the corpus of size much larger than
the Markov order.

We illustrate this phenomenon on a text corpus: John-
ston’s English translation of Pushkins Eugene Onegin — a
reference to Markov, as he used the same corpus (in Russian)
for his pioneering studies. Here, an element of the Markov
chain is a word of the text or a sentence separator, and a
sequence is a succession of such elements. With a Markov
order of 1, we obtain the following sequence:

Praskovya re-baptized “Polina”. Walking her secret tome that rogue, backbiter,
pantaloon, bribe-taker, glutton and still eats, and featherbeds, and enjoyment locked
him all went inside a day wood below the flower was passion and theirs was one
who taught her handkerchief has measured off in caravan the finest printer with pulses
racing down, he’ll be nothing could draw it abounded.

On top of the text, we draw the longest subsequences that
appear verbatim the corpus, or chunks, assigning different
colours to different lengths. For example, this generated se-
quence contains the chunk “[...] that rogue, backbiter, pan-
taloon, bribe-taker, glutton and [...]”, which is a subsequence
of length 7 from the corpus. The maximum order of a se-



Markov order median lower quartile  upper quartile
1 2 2.0 3.0

2 2 2.0 3.0

3 9 6.0 13.0

4 45 28.0 65.0

5 78 77.0 79.0

6 78 78.0 79.0

Table 1: Maximum orders for different Markov orders

quence is the maximum length of its chunks (7, in our ex-
ample).

If we increase the order to 3, we obtain sequences such as
the following one:

Love’s frantic torments went on beating and racking with their strain and stress that
youthful heart. It all seemed new — for two days only — the estate provides a setting
for angry heirs, as one, to admire him — and replies: Wait, I'll present you — but inside
a day, with custom, love would fade away. It’s right and proper that you transcend in
music’s own bewitching fashion the foreign words a maiden’s passion found for its
utterance that night directed his.

This sequence makes arguably more sense than the one
generated with order 1. However, its maximum order is 20
(i.e. it contains a 20-word-long subsequence copied verba-
tim from the corpus). To any reader familiar with the corpus,
this would read like blatant plagiarism.

To illustrate this phenomenon in a more general way, we
generated a few hundreds of sequences of varying order
(from to 1 to 6). Table 1 shows the maximum order observed
for each Markov order: this value increases to values much
higher than the Markov order. Markov order affects train-
ing: when estimated from a corpus, the Markov model learns
all continuations of sequences of k states or less. However,
this parameter k£ does not limit the maximum order of the
generated sequence. In particular, the whole corpus itself is
trivially a valid Markov sequence of order k.

This paper addresses precisely the problem of generating
Markov sequences with an imposed maximum order. Such
sequences cannot be obtained with greedy approaches like
random walk. However, the maximum order problem can be
seen as a specific instance of a constrained Markov prob-
lem. Introduced by Pachet and Roy (2011), Markov con-
straints consist in reformulating the generation of Markov
sequences as a combinatorial problem (CSP). By enforc-
ing arc-consistency of the Markov constraints, we can solve
such a CSP in a backtrack-free manner, thus simulating a
greedy random walk generation procedure.

As opposed to greedy approaches, the Markov constraint
approach guarantees a complete exploration of the space of
sequences. The variables of this CSP represent the elements
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of the sequence to generate. Markov constraints enforce that
variables in the sequence should have valid Markov contin-
uations. Sequence generation is obtained by CSP resolution.
Additional constraints can be easily introduced to control the
generation of the sequence. In practice, the problem boils
down to the identification of efficient arc-consistency algo-
rithms for the given constraints.

Under this framework, we introduce the MAXORDER
global constraint. It holds on all the variables of the CSP,
and states that 1) the sequence is a valid order k¥ Markov
sequence, and 2) no L consecutive variables form a se-
quence that belongs to the training corpus. Following Pe-
sant (2004) and Beldiceanu, Carlsson, and Petit (2004), we
enforce generalised arc-consistency by feeding a constraint
such as REGULAR an automaton that accepts the set of such
sequences. However, we show that canonical methods are
not satisfactory for building this automaton. The main con-
tribution of this paper is a linear-time algorithm that builds
this automaton.

Running Example
We consider the corpus made of ABRACADABRA, where
each element is one of the symbols A, B, C, D or R. With
k = 1, the Markov chain estimated on this corpus is given
by the following transition matrix:

A B C D R
A 4,0 05 025 025 0
B [0 0 0 0 1
c |1 0 0 0 0
D \1 0 0 0 0
R \1 0 0 0 0

During a training phase, these probabilities are estimated
according to their frequency in the corpus. Here, in the four
continuations for A in the corpus, two are with B, one with
C and one with D. A sequence is a Markov sequence, ac-
cording to an order £ Markov chain, if every k-gram of the
sequence has a continuation with a non-zero probability. For
example, ABRADABRACA is a valid Markov sequence,
but ABRACADABA is not a valid Markov sequence, be-
cause the probability of having A after B is zero.

Automaton Representation

Following the works on language automata and global con-
straints, we can encode a set of Markovian sequences us-
ing an automaton. Global constraints such as REGULAR can
then take this automaton as input to generate sequences.

Definition 1 (Automata). A deterministic finite-state au-
tomaton, or, simply, automaton, is a quintuple A
(@,%,0,q0, F), where:

@ is a finite non-empty set of states;
. is the alphabet — a finite non-empty set of symbols;
qo € @ is the initial state of the automaton;

¢ is the transition function Q x ¥ — @, which maps a
state to its successors for a given symbol;

F C @ is the set of final, or accepting, states.



Figure 1: A Markov automaton for the ABRACADABRA
corpus, with k = 1

Definition 2 (Accepted language). An automaton recog-
nises, or accepts, a set of words, called a language, defined
as follows.

e Aword w € ¥* is a sequence a; . ..a, of symbols a; €

PN
e The word w is accepted by A if and only if there exists a

sequences qo, . . . , gp of states, such that 6(g;—1, a;) = ¢,

forall¢,1 <i<p,and g, € F.

e L(A) = {w € ¥*|wis accepted by A} is the accepted

language of A.

In order to represent order k Markov transitions, we create
an alphabet > where each symbol corresponds to a unique k-
gram of the corpus. Then, a valid order k£ Markov transition
is represented by two symbols, such that their two corre-
sponding k-grams overlap on their common k£ — 1 symbols.
A valid Markov sequence of length n is represented by a
word of length n — k£ + 1 on this alphabet.

For example, for k = 2, the sequence ABRA corresponds
to a sequence of three 2-grams (A, B), (B, R), (R, A). We
can assign three symbols ai,a2,a3 € X to those three
2-grams in their respective order. The Markov transition
A,B — R is represented by the word ajas, and the se-
quence ABRA by the word a;asas.

Definition 3 (Markov Automaton). A Markov automaton
associated to a corpus is an automaton A such that £(A) =
{ay ...a, € ¥*|a;a;11 is a Markov transition, Vi, 1 < i <
n}

Figure 1 shows a Markov automaton for the corpus
ABRACADABRA with k = 1.

We can now represent the set of Markov sequences satis-
fying the maximum order property as the following automa-
ton.

Definition 4 (Maximum Order Automaton). Let M be a
Markov automaton for a given corpus. For a given no-good
aj...ar € N,let A(ay ...ar) be an automaton such that
L(A(ay...ar)) = {w € Z*|ay ...ay is a factor of w}, i.e.
the language of words containing at least one occurrence of
the no-good. An automaton MO is a maximum order au-
tomaton for C and N if:
M

L(MO) = L(M)N
ai...ap, EN

Figure 2 shows a maximum order automaton for the cor-
pus ABRACADABRA, with £ = 1 and L = 4. The labels
in the states correspond to prefixes of forbidden no-goods.

[,(A((ll N (J,L)>
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Figure 2: A maximum order automaton for the ABRA-
CADABRA corpus, with k =1 and L = 4

The MAXORDER Constraint

The purpose of MAXORDER is to generate Markov se-
quences with a guaranteed maximum order. The constraint
takes two parameters C and N; C C %2 denotes a set of
valid Markov transitions, each represented by an element
ajas € C corresponding to a valid pair of k-grams; N' C £
denotes a set of forbidden sequences, or no-goods.

In practice, each no-good of size L = L’ — k + 1 corre-
sponds to a sequence of size L’ that appears in the corpus,
where k is the Markov order, and L’ is the maximum order.

MAXORDER is defined as follows.

Definition 5 (MAXORDER constraint). The constraint
MAXORDER(C, N, X1, ..., X,) holds iff:

e foreachi, 1 <i<mn, X;X;41 €C;
e foreachi, 1 <i<n—L +1,X;... Xsup_1 €N.

For example consider the ABRACADABRA corpus, with
k = 1and L 4. There are 7 no-goods: ABRA,
BRAC, RACA, ACAD, CADA, ADAB, DABR. The Marko-
vian sequence ABRADABRACA does not satisfy the max-
imum order property: it contains the no-goods ABRA,
ADAB, DABR, BRAC, RACA. The Markovian sequence
RADADACAB does not contain any no-good of size 4, and
so satisfies the maximum order property for L = 4. In fact,
any satisfying sequence is a substring of a string following
the pattern BRA(DA)*(CA)*BR.

Propagating the MAXORDER Constraint

There is a canonical way to propagate MAXORDER by con-
sidering the maximum order automaton. Then, we can en-
force the MAXORDER constraint by imposing a sequence of
variables to form a word recognised by this automaton, us-
ing the REGULAR constraint (Pesant 2004). If T is the size
of the automaton (the number of transitions), generalised
arc-consistency on a sequence of n variables is achieved in
O(n.T') time.

The maximum order automaton can be built using stan-
dard automata theory operations that implement Defini-
tion 4. Initially, we build a Markov automaton (we provide



in this paper an algorithm for doing this). Then, for each no-
good, this automaton is intersected with the negation of the
automaton recognising sequences containing the no-good.

However, the complexity of this procedure is dominated
by the complexity of intersecting a number of automata. If
O(t) is the size of any of the automata, and N = || is the
number of no-goods, the complexity is O(tV). It is unlikely
that an algorithm with a better complexity exist (Karakostas,
Lipton, and Viglas 2000; 2003). Furthermore, this method
does not give any bound on the size of the final automaton
(other than O(¢")). In the following section, we propose a
linear-time algorithm to build this automaton.

Algorithms

In this section, we build the maximum order automaton in
time linear in the size of the input, the set of no-goods. As a
corollary, we show that the size T" of this automaton is lin-
ear in the size of the input, and, therefore, that propagating
the MAXORDER is polynomial too. To this end, we intro-
duce two algorithms. The first algorithm builds the minimal
Markov automaton. The second algorithm builds a trie with
the no-goods, computes their overlaps, and uses it to remove
from the Markov automaton all sequences containing a no-
good.

Markov automaton

The first algorithm consists in building an automaton recog-
nising all Markovian sequences, i.e. sequences where any
two successive k-grams correspond to a k + 1-gram of the
corpus, for a Markov order of k. This automaton, when
viewed as a labelled directed graph, is essentially a syntactic
rewrite of the Markov chain, with a different semantics at-
tached to its nodes and edges. In this automaton, each tran-
sition is labelled by a symbol corresponding to a Markov
state. A notable property of a Markov automaton is that all
transitions labelled with a given symbol point to the same
state.

Definition 6 (State labels). We use the following notation
to relate states and the labels of its ingoing transitions.

e Let g be astate, a(q) = {a € X|3¢' € Q,5(¢’,a) = q}is
the set of labels of the transitions pointing to g.

e Let a be a symbol of the alphabet, Q(a) is the unique state
g such that a € a(q).

The interpretation of a Markov automaton .4 can be stated
formally as follows. Let a;,a2 € X be two symbols. A
Markov transition between the k-grams corresponding to a;
and as is represented in A by a transition between ()(a; ) and
Q(az), labelled by as. Intuitively, when at state ¢ = Q(a1),
we can observe any one of the Markov states in a(q). If we
observe a;, we can generate a,. Since the automaton accepts
sequences of arbitrary length, all states are accepting.

We build the Markov automaton using Algorithm 1. First
a state is created that observes any Markov state (Lines 2
to 7). Then, each Markov transition is inserted iteratively.
When inserting (a1, az), a new state ¢ is created using the
separate () function. This function creates a new state,
which has the same outgoing transitions as ¢, and redirects
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Algorithm 1: Markov automaton

Data: C the set of valid Markovian transitions
Result: M the minimal Markov automaton

M — <Q72767q07F>
q <+ NewState(Q)
a(q) <0
forall the ¢ € X do
L 8(qo,a) + ¢
Q(a) < g¢; a(q) < al(q) U{a}
F + FU{qo,q}

8 forall the a,a> € C do
9 q — Q(a)
10 q + separate(q,a1)
1 q2 < Q(a2)
2 | 6(q,a2) < g2
13 if 3¢’ € Q such that q and ¢’ are equivalent then
14 Merge ¢ with ¢/
15 L Qa1) « ¢5a(¢’) + a(d’)Ualq)
function separate(q,a1)
q < NewState(A)

accept(q) + True
forall the a € ¥ such that 6(q1, a) is def do

A U AW N =

~

17
18
19

20 | (g, a) « 0(q1,a)

21 forall the ¢’ € Q such that §(¢',a1) = ¢1 do
2 | 0(q' a1) ¢

23 Q(a1) + ¢ alq) < {a1}

all ingoing a;-labelled transitions from ¢; to the newly cre-
ated state. An ao-labelled transition can be added. Minimal-
ity is incrementally maintained by assuming the invariant
that, before the call to separate (), all states are pair-
wise non-equivalent. The creation of ¢ does not affect the
equivalency of any other state (in particular, not the prede-
cessors of ¢ and g1). After we add an as-labelled transition
to g, g ceases to be equivalent with ¢;. However, with the
addition of the transition, it might have become equivalent
to a (unique) other state, in which case we merge them, thus
maintaining the invariant.

The size of the resulting automaton and the running time
to build it, are both bounded by the number of transitions in
C.

Maximum Order Automaton

The second algorithm consists in removing from the Markov
automaton any sequence that contains at least one no-good,
i.e. a sequence of forbidden length appearing in the corpus.
This is performed by Algorithm 2. Intuitively, a trie of the
no-goods is computed, where all states but the ones corre-
sponding to a full no-good are accepting states. This ensures
that a no-good is never accepted. However, this is not suffi-
cient. The key part of the algorithm is to add the connection
between overlapping prefixes. For example, if we have two
no-goods ABCD and BCEEF, the prefixes ABC and BCEF



Algorithm 2: MAX ORDER AUTOMATON
Data: N the set of forbidden no-goods
M~ (Q, %, 6, qo, F): a Markov automaton
Result: Any word containing at least one no-good is not
recognised by M

// Remove transitions that start a
no—-good
forallthe a; ...a; € N do
q < Qa1)
q + separate(q,ay)
Clear outgoing transitions of ¢
w(q)  (a)

N oA W N -

// Compute the trie of no-goods

6 Qtrie — @

7 forall the a; ...ar, € A do

8 q < qo

9 141

while 6(q, a;) exists do
q « 6(q, a;)
14— 1+1

fora;,i <j<Ldo
q' + NewState(Qrie)
F+ FU{{}
6(g, a;) ¢
w(q') « (aq,...
a(q’) < {a;}
q<q

| F«< F\{d¢}

N

// Compute cross prefix transitions

21 forall the ¢ € Q). do

2 | S(q) + {d' € Qric|w(q)is a strict suffix of w(q’)}

23 forall the ¢ € Qe in order of decreasing |w(q)| do

24 forall the a € ¥ such that 6(q, a) exists do

25 forall the ¢’ € S(q) do

26 if 0(¢', a) is undefined then

27 5(¢',a) + 6(q,a) // transition
is Markovian

28

// Markovian completion

29 forall the Vq € ;e do

30 {a1} « a(q)

31 forall the ay € X such that a1as € C do
32 if 0(q, az) is undefined then

33 L L (g, a2) < Q(az)

34 Q%QU(QtrieﬁF)

overlap on BC. This means that the automaton should not
accept ABCD, but it should not accept ABCEEF either. This
connection is made using cross-prefix transitions. In order to
achieve this, Algorithm 2 uses an adaptation of the Aho and
Corasick (1975) string-matching algorithm.
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In more details, this algorithm first disconnects from
the Markov automaton any transition that starts a no-good.
Then, those transitions are extended to a full trie of all the
no-goods. For a state ¢ of the trie, w(q) records the pre-
fix recognised by this state, i.e. the word accepted from qq
to ¢q. By excluding the states that recognise a complete no-
good (line 20), we guarantee that no sequence including any
no-good will be recognised. However, we are not removing
those states yet. We first have to deal with a key aspect of this
algorithm, which concerns the overlap between no-goods.
For example, with two no-goods ABCD and BCEF, sup-
posing we started ABC, we cannot continue with D, as this
would complete a no-good. However, if we continue with E,
we start the no-good BCEF. Therefore, a cross-prefix transi-
tion between the state for ABC and the state for BCE must
be added. Cross-prefix transitions ensure that, by avoiding a
particular no-good, we will not inadvertently complete an-
other no-good. We use an adaptation of the Aho and Cora-
sick string-matching algorithm (Aho and Corasick 1975):
when we use a transition that does not extend the current
prefix, we can jump directly to the longest no-good that is
a suffix of the current prefix. Finally, we add transitions in
the trie for any state missing some valid Markov transitions.
Those transitions either point back to the original Markov
automaton, for Markov transitions that do not start any no-
good, or point to the states of the first layer of the trie, for
Markov transitions that start a new no-good. Since we kept
the transitions to the non-accepting states that complete a no-
good, we know we are not introducing any no-good. We can
know finally remove those non-accepting states (line 34).

The algorithm adds exactly once each transition of the re-
sulting automaton. Therefore, it runs in time linear in the
number T of transitions of the final automaton. Let N =
L.|N| be size of the input /. When constructing the trie,
it creates exactly N transitions. During the next phase, the
added transitions are exactly those added by the Aho and
Corasick algorithm. Their number is linearly bounded by N,
a (non-trivial) result from Aho and Corasick (1975). Finally,
the number of transitions added to each state during the com-
pletion phase is bounded by |X|, which is independent of .

Note that the general idea of this algorithm is similar to
the algorithm by (Villeneuve and Desaulniers 2005), which
computes shortest paths with forbidden paths. However, they
operate in a very different context, and are only interested in
shortest paths, whereas we are interested in all sequences.

Generating Sequences with a Maximum Order
guarantee

We can use the maximum order automaton to generate se-
quences, by using any implementation of REGULAR. In
practice, we use a decomposition based method (Quimper
and Walsh 2006; 2008), which works better in practice with
large automata, by exploiting efficient propagators for ex-
tensional (table) constraints.

In order to simulate a random walk procedure with a vari-
able order, we chose the following variable and value order-
ing heuristics. We use static variable ordering heuristics, in
their temporal order. For a given variable X;, we consider
up to k previous variables. We then consider all the contin-
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Figure 3: Solution loss from MAXORDER, on “Eugene One-
gin” with & = 3, n = 20, for various values of L

uations in the corpus for the sequence X;_p, ..., X;_1 that
are arc-consistent for MAXORDER. If the number of such
continuations is above a certain fixed threshold, we choose
one, using the transition probabilities. Otherwise, the proce-
dure is repeated for a smaller k, until one value is found.
We start with & = L — 1. Note that using the transition
probabilities does not necessarily generate sequences with
the right probability distribution (Pachet, Roy, and Barbieri
2011). This is however a reasonable approximation in the
context of this paper.

A resolution on this model will be backtrack-free, and
will simulate a random walk with a variable order — with the
aforementioned caveat concerning transition probabilities —
with the maximum order guarantee.

Evaluation

We applied our algorithm on the “Eugene Onegin” corpus
(2160 sentences, 6919 unique words, 32719 words in total).
An interesting question is how likely a stochastic method
finds sequences satisfying the maximum order property. As
we mentioned at the beginning of the paper, it has been
widely observed that high order Markov models tend to
replicate large chunks of the corpus. Our model enables us
to make exact solution counting (as a consequence of hav-
ing arc-consistency). We first count the total number S of
Markovian sequences of length n = 20, with a Markov order
3, based on the Eugene Onegin corpus. We compare this to
the number S, of Markovian sequences with a maximum or-
der of L, with L ranging from 5 (the minimum non-trivially
infeasible value), to 21 (the minimum value for which MAX-
ORDER is trivially satisfied). We call solution loss the ratio
1 — (SL/S): the closer it is to 1, the more Markovian se-
quences are “ruled out” because they do not satisfy the max-
imum order property for L. We show the results on Figure 3.
Naturally, the constraint is tighter for low values of L. For
L = 5 for example, there is no solution, leading to a solution
loss of 1. For bigger values, the solution loss is still close to
1, with less that 1% solutions left. To see how this translates
in terms of probabilities, we generated all the solutions — 29
in total — for L = 9, and measured their total probability,
which is 1E-22. This indicates that the possibility to gener-
ate those sequences with random walk is highly unlikely.
We show an example of a text generated with this method
on our illustrating corpus “Eugene Onegin”, with a maxi-
mum order L = 6, on Figure 4. By construction, chunk sizes
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Blessed is he who’s left the squire no time devoted to the North.
After that, you’re married: no look, no word to say and then began
to lift his pistol in his glance, or else. The friends in all that is the
one. Ah Tanya, come to know it in the fashion and in second all
in fever. We must confess that all of an earlier time. Look to the
circle of our first ages from thirty down to the end. He’s moved.
For cousins from afar, darlings, then we’ll throw at him. Never.
She was still helping the poor butterfly. Happy is he apparelled.
Is this the man of honour and the marriage-bed, in all the play of
hope? He failed to understand and took deep in gloom and mist. I
beseech, and take a swill. He arrives, the girl’s attentive eyes are
dreaming. But to the bereaved, as if beneath her pillow, his father
died. From her husband’s or the unaffected thoughts of all that is
the advent of the hall.

Figure 4: An example sequence with a max order L = 6

FlowComposer
cHr 7 £7 B 79 Abmy - FibS EM7 Obmy Bz (E7b9

IEEEE R o i e
Bl A} ==

—
Little Boy Lost+4 WhaTAre You Doinig The Rest Of Your LifeFell A Lie-3.
What Are You Doing The Rest Of Your Life?-1 Tell A Lie-3

Bbm7bS

Eb7

Figure 5: A lead sheet generated with a Markov order 2, in
the style of Michel Legrand

are bounded by 6, and hence we do not report them on the
figure. For information, 48.8% of the chunks of the sequence
were of size 5, 32.5% of size 4, and 18.7% of size 3. The use
of MAXORDER guarantees that no copy of size 6 or more is
made from the corpus.

Throughout this paper, we used text generation as an ex-
ample application, since it provides an easy to grasp illustra-
tion of our approach. However, Markov chain are often used
for automatic music generation (Nierhaus 2009). We also
applied our approach to the generation of lead sheets with a
max order control. A lead sheet is composed of a simplified
melody (one note at a time), and a sequence of chord labels.

Figure 5 shows a lead sheet generated with a Markov or-
der 2, in the style of French composer Michel Legrand. We
highlight chunks in different colours, each chunk being an-
notated with the name of song of the corpus where it comes
from. More than half of the lead sheet is a replication of an
existing sequence by the composer.

n On Figure 6, we additionally impose a max order of 6.
As a result, there is no replication lasting two bars or more
in the generated lead sheet.

Conclusion

We have introduced the problem of generating Markov se-
quences satisfying a maximum order, an important issue
with Markov models that has never, to our knowledge,
been addressed previously. We formulate the problem in
the framework of Markov constraints. We propose an arc-
consistency algorithm based on an efficient automaton con-
struction algorithm. The approach can be used to generate



FlowComposer

"

!
===
EREC -
A Piec€ of Sky-3
The Windils o Your Mind-2

Gbm7 B7b9  EM Gbm? B7

—

Bp = e ==

This Quiet Room+2

Figure 6: A lead sheet generated with an imposed max order
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world corpora.
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