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Abstract. Sampling random sequences from a statistical model, sub-
ject to hard constraints, is generally a difficult task. In this paper, we
show that for Markov models and a set of Regular global constraints
and unary constraints, we can perform perfect sampling. This is achieved
by defining a factor graph, composed of binary factors that combine a
Markov chain and an automaton. We apply a simplified version of be-
lief propagation to sample random sequences satisfying the global con-
straints, with their correct probability. Since the factor graph is linear,
this procedure is efficient and exact. We illustrate this approach to the
generation of sequences of text or music, imitating the style of a corpus,
and verifying validity constraints, such as syntax or meter.

Keywords: global constraints, unary constraints, Markov constraints,
belief propagation, sampling

1 Introduction

Generating novel sequences, such as text or music, that imitate a given style is
usually achieved by replicating statistical properties of a corpus. This inherently
stochastic process can be typically performed by sampling a probability distri-
bution. In practice, we often need to impose additional properties on sequences,
such as syntactic patterns for text, or meter for music, that are conveniently
stated using constraint satisfaction approaches. However, typical constraint sat-
isfaction procedures are not concerned with the distribution of their solutions.
On the other hand, traditional sampling algorithms are generally not suited to
satisfy hard constraints, since they can suffer from high rejection rates or lack
coverage of the solution space. Both issues can be avoided, in some cases, by
taking advantage of constraint programming techniques.

In this paper, we show how to sample Markov sequences subject to a conjunc-
tion of Regular constraints [22], i.e., constraints stated with an automaton, as
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well as additional unary constraints. Regular grammars can express parts-of-
speech patterns on text. In music, Meter [26] constrains Markov temporal se-
quences to be metrically correct. Meter can also be expressed as an automaton,
as we explain further in this paper. We achieve this result by defining a tree-
structured factor graph composed of unary and binary factors. The variables of
this graphical model represent the elements of the sequence, and binary factors
encode a type of conjunction between the Markov model and the automaton.
We apply belief propagation to sample sequences with their right probability.

1.1 Related Work

The combination of statistical and logical methods has been an active research di-
rection in artificial intelligence in the last few years. In constraint programming,
stochastic techniques are often used for guiding search, but less for characterising
solutions. Some work studies the impact of search heuristics on solution diver-
sity [27], but such endeavours tend to use optimisation techniques [11, 13]. Con-
versely, introducing constraints to probabilistic graphical models is problematic
since hard constraints introduce many zero probabilities, and this causes typical
sampling algorithms to suffer from high rejection rates. To overcome such issues,
Gogate and Dechter proposed SampleSearch [10], with a guaranteed uniform
sampling of the solutions of a CSP, using a complete solver to reduce rejection
rates. Likewise, Ermon et. al [8] use a constraint solver in a blackbox scheme,
and sample the solution space uniformly, often with better performance. In SAT,
Markov logic networks is a well established formalism that unifies probabilistic
and deterministic properties [7, 25]. MC-SAT [24] samples from a non-uniform
distribution of the satisfying assignments of a SAT formula. Such methods, with
applications in verification, model checking, or counting problems, are general
but expensive. The solution we propose, which focuses on a specific setting, is
not derivable from such general methods, and is both tractable and exact.

2 Sequence Generation with Markov constraints

A Markov chain is a stochastic process, where the probability for state Xi, a
random variable, depends only on the last state Xi−1. Each random variable
Xi takes values amongst an alphabet, denoted X . Seen as a generative pro-
cess, a Markov chain produces sequence X1, . . . , Xn with a probability P (X1) ·
P (X2|X1) · · · P (Xn|Xn−1). Order k Markov chains have a longer memory: the
Markov property states that P (Xi|X1, . . . , Xi−1) = P (Xi|Xi−k, . . . , Xi−1). They
are equivalent to order 1 Markov chains on an alphabet composed of k-grams,
and therefore we assume only order 1 Markov chains.

Markov chains have been classically used for generating sequences that imi-
tate a given style [5, 14, 23]. A Markov chain is trained by learning the transition
probabilities on a corpus. For example, a musical piece can be represented as a
sequence of complex objects, constituted of pitch, duration, metrical position,
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and more [17]. A Markov chain trained on this corpus will produce musical se-
quences in the style of the composer. With text, we can use a Markov chain
whose alphabet is the set of words of the corpus, to generate new sentences in
the style of its author.

Markov generation can be controlled using Markov constraints. This allows
us to specify additional properties that a sequence should verify. For example,
Meter [26] imposes that sequences of notes are metrically correct. Often, such
constraints can be conveniently stated using a Regular constraint [22], defined
with an automaton A = 〈Q,Σ, δ, q0, F 〉, where Q is a set of states, Σ an alphabet
defining labels on transitions, δ the transition function linking a state q ∈ Q and
a label a ∈ Σ to the successor state q′ = δ(q, a), q0 ∈ Q the initial state,
and F ⊆ Q the set of accepting states. In this case, we have Σ = X , i.e.
transitions are labelled using states of the Markov chain, so that the automaton
recognises admissible Markov sequences. Combining Markov constraints with
other constraints, we can restrict the solution space in any desirable way [15],
but without any guarantee that the generated sequences will reflect the original
distribution in any way. In the specific case of unary constraints, we can have this
guarantee [2]. The result presented here can be seen as a further generalisation
of this result to a set of Regular constraints. A specific implementation of this
idea was used to generate non-plagiaristic sequences [18].

3 Background on Belief Propagation

Let X1, . . . , Xn be n discrete random variables, and let p(X1, . . . , Xn) be a distri-
bution of the random sequence X1, . . . , Xn. A graphical model [21] is a compact
representation of p as the product of m factors holding on a subset of the vari-
ables, i.e. p(X1, . . . , Xn) =

∏m
j=1 fj(Sj), where the factor fj is a function holding

on a subset Sj ⊆ {X1, . . . , Xn} of the variables. CSPs can be seen as graphical
models, where solutions are uniformly distributed.

Belief propagation, specifically the sum-product algorithm [20] is an algo-
rithm for performing statistical inference, based on a factor graph representa-
tion. A factor graph is a bipartite undirected graph G = (X,F,E), representing
the factorisation of a probability function. Nodes represent either variables or
factors, and edges connect factors to the variables to which that factor applies:
X = {X1, . . . , Xn}, F = {f1, . . . , fm}, and an edge (Xi, fj) is in E iff Xi ∈ Sj .

Example 1. Consider a probability function holding on three variablesX1, X2, X3,
defined as the product of four factors p(X1, X2, X3) = f1(X1, X2) · f2(X2, X3) ·
f3(X1, X3) · f4(X3). The corresponding factor graph is shown on Figure 1.

The main use of factor graph in statistical inference is to compute marginals.
Marginals are defined for each variable: pi(Xi) =

∑
{Xj |j 6=i} p(X1, . . . , Xn). Once

marginals have been computed, sampling can be performed easily. When the
factor graph is a tree, computing marginals is polynomial. Tree factor graphs
correspond to Berge-acyclic constraint networks, and such results generalise the
well-known results in constraints [3, 6, 9].
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Fig. 1. The factor graph for the function p(X1, X2, X3) = f1(X1, X2) · f2(X2, X3) ·
f3(X1, X3) · f4(X3).

4 Belief Propagation for Markov and Regular

We apply those techniques to the problem of sampling constrained Markov se-
quences, and describe belief propagation in the case where we impose sequences
to be recognised by an automaton A, i.e. to belong to the language L(A) of
words recognised by A. This is equivalent to sampling the target distribution
ptarget defined as:

ptarget(X1, . . . , Xn) ∝

P (X2|X1) · · ·P (Xn|Xn−1) ·
P1(X1) · · ·Pn(Xn)

if X1 · · ·Xn ∈ L(A)

0 otherwise

We use the symbol ∝ to indicate that the equality holds after normalisation,
so that ptarget defines a probability function. P (X2|X1) · · ·P (Xn|Xn−1) gives
the typical order 1 Markov probability of the sequences X1, . . . , Xn, provided
it is accepted by the automaton. Additionally, we add unary constraints Pi, i.e.
factors biasing each variable Xi individually. Implicitly, there is a big factor
holding on the full sequence X1, . . . , Xn taking value 1 when X1 · · ·Xn ∈ L(A),
and value 0 otherwise, corresponding to a hard global constraint. Consequently,
the factor graph of ptarget is not a tree.

We propose a reformulation of ptarget(X1, . . . , Xn) into a new function preg of
Y1, . . . , Yn, where the new Yi variables take values (a, q) ∈ X ×Q, where a ∈ X is
a state of the Markov chain, and q ∈ Q is a state of the automaton. Recall that
transitions of the automaton are also labelled with elements of X . This function
preg is composed of simple binary factors, and its factor graph, which is tree
structured, is shown on Figure 2.

g1

Y1 Y2 YnYn−1 fn−1f1

gn−1g2 gn

Fig. 2. The factor graph of the distribution on Markov sequences accepted by an
automaton A, defined by preg(Y1, . . . , Yn)

We define a binary factor combining the Markov transition probabilities with
the valid transitions from the automaton, as follows:
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f((a, q), (a′, q′)) ∝

{
P (a′|a), if q′ = δ(q, a′),

0 otherwise

This factor gives the probability for choosing, from state q, the transition
labelled with a′, which reaches q′ (denoted by q′ = δ(q, a′)). This probability
depends on the label a of the transition that was used to reach q, and is given
by the Markov transition probability from a to a′. This factor is applied along
the sequence, i.e. fi = f, ∀1 ≤ i < n,. The binary factors imply that non-zero
probability sequences correspond to a walk in the automaton. Unary factors gi
additionally impose that such walks start from the initial state (enforced by g1)
and end at an accepting state (enforced by gn), while taking into account the
unary constraints of ptarget (enforced by all gi):

g1((a, q)) ∝

{
P1(a), if q = δ(q0, a)

0, otherwise.
gn((a, q)) ∝

{
Pn(a), if q ∈ F
0, otherwise.

Other unary factors are simply defined as gi((a, q)) ∝ Pi(a).

Theorem 1. Sampling ptarget is equivalent to sampling preg , and projecting each
resulting sequence (a1, q1), . . . , (an, qn) to a1, . . . , an.

Proof. We prove there is a one-to-one correspondence between non-zero proba-
bility sequences of preg and ptarget , and that corresponding sequences have the
same probability.

Let (a1, q1), . . . , (an, qn) be a sequence such that preg((a1, q1), . . . , (an, qn)) ≥
0. This means that q1 is the successor of the initial state q0 for a1 (from the
definition of g1), qi is the successor of state qi−1 for ai, for each i > 1 (from the
definition of f), and qn is an accepting state (from the definition of gn). In other
words, a1, . . . , an is accepted by the automaton, and, according to the definitions
of the factors, with probability exactly equal to ptarget .

Conversely, suppose that a1, . . . , an is a sequence with a non-zero ptarget
probability. Since A is deterministic, there exists a unique sequence of states
q0, q1, . . . , qn, with qn ∈ F , that recognises a1, . . . , an, and therefore a unique
sequence (a1, q1), . . . , (an, qn) with a preg probability equal to ptarget(a1, . . . , an).

In order to sample sequences from this factor graph, we adapt the general
sum-product algorithm [21], and simplify it for the following reasons: the factor
graph has no cycle (removing any issue for converging to a fixed point), the
factor graph is almost a linear graph (induced by the sequence), factors are
only unary and binary, and the procedure is used only for sampling individual
sequences. This algorithm is shown on Algorithm 1 for self-containedness. It
computes the backward messages mi←, the forward messages mi→, and the
actual sequence y1, . . . , yn, all highlighted in blue in the algorithm. The exact
justification of the algorithm is a well-established result [12, 20], and we only
give an intuitive explanation. During the backward phase, mi← contains the
marginal of Yi of the product of all factors of preg holding on Yi, . . . , Yn. This



6 Alexandre Papadopoulos, François Pachet, Pierre Roy, and Jason Sakellariou

represents the impact on Yi of the sub-factor graph “to the right” of Yi, in the
same way that arc-consistency guarantees that a value can be extended to a full
instantiation. Eventually, m1← is the marginal of Y1 of all preg , and a value is
drawn randomly according to this distribution. The full sequence is generated
during the forward phase. At each iteration, pi(Yi) is the marginal over Yi of
preg given the partial instantiation. In order to sample several sequences, the
backward phase needs to be performed only once, and the forward phase will
sample a new random sequence every time, with its correct probability. From a
constraint programming point of view, computing the marginals at each step is
a generalisation to random variables of computing arc-consistent domains. The
time for sampling one sequence is bounded by O(n · (|X ||Q|)2).

Algorithm 1: Sum-product algorithm for sampling Markov with Regular

Data: Function preg(Y1, . . . , Yn) and its factor graph
Result: A sequence y1, . . . , yn, with probability preg(y1, . . . , yn)

// Backward phase

mn← ← gn
for i← n− 1 to 1 do

foreach y ∈ X ×Q do
mi←(y)←

∑
y′∈X×Q gi(y) · fi(y, y′) ·mi+1←(y′)

Normalise mi←

// Forward phase

p1 ← m1←
y1 ← Draw with probability p1(y1)
for i← 2 to n do

foreach y ∈ Q do
mi→(y)← fi−1(yi−1, y)

Normalise mi→
foreach y ∈ X ×Q do pi(y)← mi→(y) ·mi←(y)
yi ← Draw with probability pi(yi)

return (y1, . . . , yn)

5 Examples

If no automaton is imposed, our model, which imposes only unary constraints,
is equivalent to the model in [16]. We compared the new model with our old
model, and observed it behaves equivalently, with the benefit of an improved
efficiency. We generated sequences of 16 notes with a Markov order 1 in the
style of Bill Evans, with two unary constraints constraining the first and last
note. Our old model could sample an average of 450 sequences per second, while
our new model produces an average of 1200 sequences per second, almost three
times more.
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Automata can be handy for expressing patterns on text or music. For exam-
ple, in music, a semiotic structure is a symbolic description of higher level pat-
terns, from manual annotation or using pattern discovery techniques [4]. Semiotic
structures can be easily stated using automata. In text, automata can be used
to state syntactic rules over sequences of words.

Meter [26], in its most basic form, imposes that a sequence of variables
have a fixed total duration D, assuming each value has a specific duration, and
assuming the existence of a special padding value with a null duration, which
is used only at the end of the sequence. Meter can also be encoded using
Regular. We build an automaton 〈Q,X , δ, q0, F 〉 where each state represents
a partial duration between 0 and D, i.e. Q = {q0, . . . , qD}. For every element
e ∈ X of the Markov chain, we add a transition from qo1 to qo2 labelled by e iff
o2 = o1 + d(e), where d(e) is the duration of e. Finally, we set F = {qD}. This
ensures that any accepting sequence will have a total duration of D exactly.
By imposing this automaton to the Markov model, we can sample metrically
correct Markov sequences with their correct probabilities. We tested this with a
toy problem: produce sequences of a variable number of words, but with fixed
number of syllables equal to 36, i.e. the duration of a word is its number of
syllables. We are able to sample around in average 1100 sequences per second,
against 230 sequences per second produced by a CP model with a single Meter
constraint, almost five times more.

In previous work, we introduced MaxOrder, which limits the maximum
order of generated sequences, i.e. the length of exact copies made from the input
corpus [19]. This constraint was filtered by computing a particular automaton
and propagating it using Regular. We can use this automaton with the model
of this paper, in order to sample Markov sequences with a maximum order
guarantee. Furthermore, by computing the intersection between the Meter and
the MaxOrder automaton, we can also impose meter on such sequences.

6 Evaluation

We compare our fixed-length belief propagation model with a random walk in
the automaton. The purpose of this experiment is to show that a random walk
in the automaton does not sample sequences correctly, and confirm empirically
that our belief propagation-based model is correct, with a limited time penalty.

We used each method to sample sequences of words based on Pushkin’s Eu-
gene Onegin, of length 8, of Markov order 1 and with a max order less than 4,
imposed using a max order automaton [19]. We implemented our experiments in
Oracle Java 7, and ran them on an iMac with a 3.4GHz Intel Core i7 CPU, and
16GB RAM. The automaton was computed in about 200ms. For the random walk
method, we imposed the length by rejecting shorter sequences. In total, we sam-
pled over 20 million sequences. Of those, 5 million were unique sequences. The
baseline random walk procedure generated an average of 5500 sequences per sec-
ond (counting only non-rejected sequences), while the belief propagation-based
method generated an average of 3500 sequences per second. For comparison, our
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Regular-based CP model produced only about 50 sequences per second. We
filtered those that were generated over 50 times, of which there were about 47000
with random walk, and about 35000 with belief propagation. We estimated the
probability of a sequence by computing the sum of the probability of all unique
sequences found by either method, and use this for normalising.

We plot our results on Figure 3. Each point on either graph corresponds
to a sequence. Its value on the x-axis is its probability, estimated as described
previously, while the values on the y-axis is the empirical probability, i.e. the
frequency at which the specific sequence has been sampled compared to the
total number of sequences. Figure 3(a) shows that the baseline sampling ap-
proach performs poorly: many sequences, even of similar probability, are over or
under-represented. On the other hand, Figure 3(b) provides a striking empirical
confirmation of the correctness of the belief propagation model.
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Fig. 3. Sampling with random walk in the automaton compared to belief propagation.

7 Conclusion

We defined a belief propagation model for sampling Markov sequences that are
accepted by a given automaton. To this aim, we introduced a tree-structured
factor graph, on which belief propagation is polynomial and exact. This fac-
tor graph uses binary factors, which encode a type of conjunction between the
underlying Markov model and the given automaton. We showed that this pro-
cedure allows us to sample sequences faster than equivalent CP models, and
demonstrated that such sequences are sampled with their exact probabilities.

This result can be used for sequence generation problems in which users want
a set of solutions that are both probable in a given statistical model, and satisfy
hard regular constraints. More generally, we believe that this approach offers an
interesting bridge between statistical inference and constraint satisfaction.
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