
Modeling and Applying the Knowledge of Synthesizer
Patch Programmers

Pierre-Yves Rolland, François Pachet
Laforia-IBP, Université Paris 6, Boîte 169

4, place Jussieu,
75252 Paris Cedex 05, France,

Email: {rolland, pachet}@laforia.ibp.fr

Astract

In order to produce better man-machine interface for
commercial synthetisers, we propose to automate
substantial chunks of superficial knowledge related
to patch programming. This knowledge is
essentially related with how to transform sound
patches rather than how to build patches from
scratch. Sounds are therefore classified according to
the transformations they can support. The
classification is represented within the framework
of description logics.

1 . Introduction

Our framework stems from the following remark. In an
intensive care unit, a typical nurse knows perfectly well
how to use an infusion pump. However, the nurse may be
an "expert" in infusion pump manipulation without
necessarily having any theoretical knowledge of the device
nor of medical issues related to diagnosis, treatment of
patients, and so on. She may even be more expert than
the doctor himself. But she knows what she needs to
know: some kind of superficial knowledge about how to
use the machine productively and safely. By analogy, we
compare 1) expert patch programmers, who know how to
effectively program synthesizers, and 2) sound synthesis
experts, who possess extensive theoretical knowledge on,
say signal processing and filtering but little knowledge on
how to program a commercial synthesizer such as a
Yamaha SY99, or Korg 05R/W. We focus on
representing the knowledge manipulated by the first
category of experts, and claim that it is possible to capture
substantial chunks of this knowledge, to produce better
man-machine patch programming interfaces.
Various CAS systems have been proposed, such as
CHANT (Rodet et al. 1984), ISEE (Vertegaal and Bonis
1994), Kyma/Platypus (Scaletti 1989), Javelina (Hebel
1989), DMIX (Openheim 1989), or ARTIST (Miranda

1994). Most of these systems address sophisticated
synthesis techniques, which are far less common in the
community of real musicians than commercial
synthesizers. Further, no system to date proposes to
represent the common sense knowledge experts have on
patch programming, particularly their knowledge on how
to transform a patch into another. This is what motivates
our attempt to study CASP (Computer-Aided Synthesizer
Programming), as opposed to CAS in general. We will
now detail the two assumptions on which our approach to
CASP is based.

2 . Assumptions

A1. Most of the expertise lies in the
transformation knowledge.
It is a well known fact that synthesizer experts have
trouble teaching how to make a sound from scratch.
However, they are much more at ease in explaining how to
transform one sound into another. Based on this
observation, we think that most of the expertise lies in the
transformation knowledge. This leads us to represent the
knowledge associated to transformations, rather than to
sound structures themselves. Following are two typical
examples of transformation rules that we want our system
to take into account. (R1) is a typical transformation rule
that may apply to virtually any kind of commercial
synthesizer providing parameters for a filter section. The
second one, (R2), also applies to most commercial
synthesizers, but is valid only for "harmonic" sounds, as
opposed to "unpitched" tones such as cymbal tones:

(R1) You can make a sound brighter by increasing the
low-pass filter's cutoff frequency.
(R2) You can make a sound warmer by duplicating the
sound and applying a slight detune - typically 1/10 tone -
to the duplicate.

A2. Commercial synthesizer programmers use
superficial knowledge.
Our hypothesis is that commercial synthesizer
programmers use far more know-how than theoretical
knowledge. The case of FM synthesis is particularly
interesting in this respect. The success story of the DX
series showed that lots of famous patches were designed by
people who understood only a limited fraction of the
underlying - and complex - FM theory. Instead, they
would use some kind of superficial knowledge about the
complex interactions between the DX parameters, gained
from experience or by studying other patches. Attempts to
widespread FM theory by e.g. Chowning and Bristow
(1986) showed that understanding FM theory played a
minor role in programming effectively DX synthesizers.
Although the book contains some theoretical material, the
emphasis is put on giving practical hints to musicians.
Programmers can use "know how" rules like R1 and R2 to
build sounds, without knowing their theoretical meaning.

3 . Transformation rules and sound
classification

3.1. Organization of knowledge

Transformation rules such as the ones above are easy to
represent in a knowledge-based system, e.g. by means of
production rules. Of course, as the examples show, not all
transformations are applicable to all kind of sounds. More
precisely, transformations are binary i.e. each applies to
one origin sound types and leads to one target sound type.
Target sound types are characterized here by simple
comparatives, such as "warmer", "brighter", etc. In order
to organize those sound types, we need some kind of
classification scheme. Classifying target sounds, based for
instance on results of work in the area of timbre perception
(Wessel 1979; Grey 1975), is irrelevant in our context: we
are interested in classifying sounds according to what
future transformations they can afford, and not according to
the transformations that produced them. For example, we
are not interested in classifying "brassy" sounds within a
given typology of sounds. Rather, we are interested in
identifying "sounds-that-may-become-brassy", i.e. sounds
for which we know of a particular transformation that can
make them "brassy".
In this scheme being an instance of a sound type means
nothing more than "being able to undergo the
transformations associated to that particular sound type",
so sound names are not significant. However, since we
need names (e.g. for browsing purposes), by convention
we name sound types by suffixing them with "able", e.g.
"brassy-able" or "warm-able". When a sound type affords
several transformations, we give it a compound name,
such as "brassy-and-bright-able". In this classification
each transformation is associated to a particular sound
type: transformation (R2) is associated to sound type
"warm-able", (R1) is associated to "brassy-bright-able",
and so forth.
The hierarchical relation linking a sound type to one or
more parent sound types is a specialization relation. As a
consequence, transformations associated to a sound type are
inherited by its children. A part of a sound hierarchy for
the Korg 05R/W synthesizer is shown on Figure 1.

Sound types are represented as boxes, while names under
boxes indicate applicable transformations. Arrows
represent type/sub type relationships.
The main task of the system is therefore to classify a
sound according to a pre-defined classification. We will
now describe our framework, in which we represent sound
types.

3.2. The representation framework

The characteristics of the knowledge we want to represent
about sound transformations led us to look for a
representation framework integrating both 1) classification
facilities to manipulate sound hierarchies and 2) a
procedural language to express transformations of the
current sound.

Sound in general

- bright
- dull

Harmonic-able

Warm-able

- harmonic

Decaying-able

- decaying

Sustain-able

- sustained

ElectricPiano-able

- electricPianoLike

- long

Short-able

- short

Brassy-able

- brassy

...

-dull

Long-able

Figure 1. A part of the sound type hierarchy for the 05R/W
synthesizer

Description logics to classify sounds.
An important characteristics of the sounds we want to
model is that — at least on a superficial level — they may
be described in a symbolic fashion, and not simply as an
array of parameter values. For instance, a sound in the
Korg 05R/W decomposes into one to sixteen voices. Each
voice in turn decomposes into one or two tones, each
characterized by a filter section , an amplification section,
and so forth (KORG).
This strong structuring of sounds is well captured by
description logic (DL) formalisms in which structural
relations are stated in a declarative manner by the user and
the system handles all inferences, i.e. classification and
subsumption. A hierarchical knowledge organization is
proposed in which every concept inherits information from
more general ones. Also, the basis for a structuring of
concepts is provided under the form of inter-concept links
or r o l e s . Among the various available DL
implementations (Heinson et al. 1994), we were
particularly interested in the BACK system (Hoppe et al.
1993), which offers a satisfactory compromise between
expressiveness, completeness and efficiency. In Back,
concepts are sets of objects specified either intensionaly or
extensionaly, and objects are instances of one or more
concepts. Roles are binary relations between objects. For
any given object o, the objects that are linked to o through
role r are called role fillers for role r and object o (see

examples below). Providing information to BACK V5
can be done through term introductions and object
creations, or through the use of non-definitional rules
which impose particular logical relations between given
concepts and roles. Besides, various kinds of information
can be retrieved: retrieving the result of the classification
for an object o yields the list of concepts o instantiates;
querying the system for concept subsumption produces a
Boolean answer as to whether a concept c1 is subsumed by
concept c2, i.e. whether any instance of c1 is also an
instance of c2.

OOP to represent transformations.
On the other hand, we need to represent transformations
effectively and not only at an abstract level. As will be
seen, the formalism of Description logics does not allow
to represent and organize transformations easily.
Moreover, MIDI communication as well as user interface
are typically a lot easier to program using object-oriented
techniques. Sounds can be represented as instances of
sound classes, and transformations as methods for these
classes. We chose Smalltalk-80 for its acknowledged ease
of use, and for its widespread use in the computer music
research community (see Computer Music Journal, 13 (2),
1989 for instance).

A scheme to link both representations.
Having two different knowledge representation paradigms
coexist is not straightforward because information is
redundant and incompatible: A sound is represented both as
a BACK object and as a Smalltalk instance, which are not
directly compatible. We propose a scheme for coupling
the two representations (section 5).

4 . T h e c l a s s i f i c a t i o n o r i e n t e d
representation of sounds

We built up a representation of sounds using the
formalism of Description Logics, by introducing two
kinds of concepts: fundamental and abstract concepts.
fundamental concepts are used to represent the various
entities shown on Figure 2; abstract concepts represent the
structural part of the programmer's expert knowledge. We
will now examine these two concept categories in more
detail.

Fundamental concepts
We represent the technical description of sounds (as
provided by the synthesizer manufacturer) by a set of Back
terms. We call these terms "fundamental" because they are
a quasi direct transcription of the synthesis model
architecture of the synthesizer.
For example, the tone concept cannot be defined using
less specific concepts other than a special preset concept
called anything . Therefore, the tone concept is
introduced using necessary classification conditions with
respect to the classification of its instances, which is
materialized by a primitive concept introduction, denoted
by the symbol :< as follows:

tone :< anything

The waveform concept is defined (symbol :=) as its
extensive introduction yields necessary and sufficient

instance classification conditions. For obvious reasons,
instead of listing all possible waveforms (over 300), we
provide here an excerpt with just a few examples.

waveform := attribute_domain ([sine, square,

saw, organ, fluteLoop, whiteNoise]).

The primitive role hasWaveform can then be introduced
to represent which waveform a tone is based on. We call
such a role terminal as its fillers represent actual synthesis
parameters as opposed to abstract structures like voices or
envelopes.

hasWaveform :< domain(tone) and

range(waveform).

Another defined concept is doubleVoice, which is
introduced based on the primitive concept voice, with
number restrictions applying to the role hasTone:

doubleVoice := voice and exactly(2, hasTone).

Abstract concepts
On top of this first layer of representation, we build up a
hierarchy of concepts that represent the structural part of
the programmer's expertise. As will be explained later, the
concepts introduced here are used to define transformations.
We divide these concepts into three categories:

Abstract concepts built from fundamental concepts.
These include partial descriptions of sounds, such as
heldTimeFunction, defined as a TimeFunction
whose 'sustainLevel' value is greater or equal to 1. In
synthesis terms, this allows to describe, for instance,
sounds whose loudness eventually stabilizes to a non-zero
value. On the 05R/W, this is obtained by setting the Time
Variant Amplifier Envelope Generator's Sustain Level to a
strictly positive value.

timeFunction and the (sustainLevel, ge(1))

=> heldTimeFunction.

Similarly, we introduce abstract concepts that, as will be
seen below, play a part in building up the brassy-able
sound type's representation. This code listing shows the
manner in which these interdependent, abstract concepts are
introduced.

FilterEnveloppe and heldTimeFunction

and the(attackTime, ge(17) and le(25))

and the(attackLevel, ge(85))

and the(decayTime, ge(60) and le(75))

and the(intermediateLevel, ge(25) and

le(35))

and the(heldLevel, ge(25) and le(35))

=> brassyAbleFilterEnv.

filter and

 the(hasEnveloppe,brassyAbleFilterEnv)

=> brassyAbleFilter.

brightTone

and the(hasFilter, brassyAbleFilter)

and the(hasAmp, brassyAbleAmp)

=> brassyAbleTone.

voice and atleast (1, hasTone, brassyAbleTone)

=> brassyAbleVoice.

Other examples of abstract concepts which reflect
structural expert knowledge are those describing 'non
transformable' sounds. Contrary to the above abstract
concepts, these concepts provide complete descriptions of
sounds which do not afford any particular transformation
but which are used for describing transformable sounds:

sound and no(hasVoice,

voiceWithInharmonicTone)

=> harmonicSound

Note that since any sound type is subsumed by the
transformable sound type soundInGeneral, even
instances of non transformable sounds types can undergo
some general transformations, such as 'make bright' or
'make dull'.

Concepts describing transformable sounds.
Finally, these concepts describe the sounds types found in
the hierarchy (figure 1). Here are a few examples of such
concepts.

harmonicSound and some (hasVoice,

brassyAbleVoice)

=> brassyAbleSound

sound and all(hasVoice, sustainAbleVoice)

=> sustainAbleVoice.

sound => soundInGeneral.

Concepts representing transformations themselves.
To each sound type we associate a list of transformations,
represented as mere character strings. This list is
materialized by a sub-concept of possible-
Transformations, an extensional concept which lists
all possible transformations for all existing sound types.
Here are a few examples:

possibleTransformations:= attribute_domain

([warm, brassy, dull, decaying (...)]).

affordsTransformation :< domain(sound) and

range (possibleTransformations).

brassyAbleSound :< affordsTransformation :

brassy.

WarmAndSharpAbleSound :< affordsTransformation:

warm and sharp.

5. Integration scheme

Representing sounds as objects, in the sense of object-
oriented programming, is particularly natural in our
context, where emphasis is put on transformations. Each
transformation is represented by a Smalltalk method
defined in class CurrentSound.

The integration scheme needed to link these two
representations is based on two principles: fundamental
concepts on one hand are represented by Smalltalk classes.
Each role of a concept is represented by an instance
variable of the corresponding class. An actual sound is
represented by an instance of class CurrentSound, and

its parameters by instances of the corresponding classes.
Transformations, on the other hand, are represented by
methods associated to class CurrentSound. Each
method modifies the current sound by changing some
values of its parameters. Therefore, the semantics of the
BACK symbol representing transformations is given by
the corresponding Smalltalk method. This yields a two-
level representation framework with two links, as shown
in Figure 2.

voice, tone
terminal roles

voice, tone
terminal roles

Smalltalk BACK

fundamental conceptsCurrent sound

intermediary concepts

sound types

List of
Transformations

Methods

classification
request

result

Figure 2. The two representations of sounds and their
connection.

6 . Execution

A session with our system is described by the following
iterative cycle of operations :
Step 1. The user chooses an initial patch. This initial
patch may be either one of the user's own patches or one
selected from an external library, including patches created
during past sessions.
Step 2. The patch is transmitted to BACK to be
classified. As a result, BACK generates the list of sound
types instantiated, together with the associated
transformations. This data is then transmitted to
Smalltalk.
Step 3. The user selects one of the proposed
transformations. Parameters in the currentSound
Smalltalk object are modified accordingly, and actual
synthesizer parameters are changed so the user can play and
listen to the new sound.
Step 4. Back to step 2, and loop until the user is satisfied
with the current sound.

Figure 3 shows an example of a typical user session. In
order to provide some flexibility, our system offers an
alternative to step 3 in which the user directly changes
individual synthesizer parameters. This still allows for the
resulting sound to get classified and thus undergo further
transformation cycles.

7. Discussion

The main contribution of this work concerns the use of a
sophisticated AI representation formalism, Description
Logics, to capture superficial knowledge about synthesizer
patch programming. This knowledge, mainly related to
sound transformations, can then be exploited to help
musicians browse through the timbre space of a

commercial synthesizer in an intuitive way, thereby
reducing the complexity of the sound making process.

A prototype was built and tested with the Korg 05R/W
synthesizer. In a typical session the user iteratively selects
transformations proposed by the classification process.
After a transformation is applied, the current sound gets re-
classified, which makes it able to undergo new
transformations, and so on. The work is still in progress,
and our efforts concentrate on providing the system with a
learning capability (e.g. based on inductive learning from
examples), which will allow the user to define new sound
types (resp. transformations) by presenting sets of
example patches (resp. patch couples) to the system.

Initial patch

Classification
request

SMALLTALK

etc...

Classification result

Sound types

warmAndSpaciousAble
 - warm

 - spacious

Transformations

soundInGeneral - bright

 - dull

Classification

request

Classification result

Sound types

brassyAble - brassy

Transformations

decayAble - decaying

etc. etc.

BACK

User consultation

'make sound : bright'

currentSound

User consultation

'make sound : brassy'

currentSound

currentSound

Figure 3. An example session.

8 . References

Brachman, R.J., and J.G. Schmolze, 1985. "An overview
of the KL-ONE knowledge representation system."
Cognitive Science 9(2): 171-216.

Chowning, J. and D. Bristow. 1986. FM Theory &
applications by musicians for musicians. Yamaha
Music Foundation Corp.

Goldberg, A., and D. Robson. 1983. "Smalltalk-80 :
The language and its implementation." Reading, MA:
Addison-Wesley.

Grey, J. 1975. An Exploration of Musical Timbre.
Ph.D. dissertation, Stanford University Psychology
Dept. CCRMA Report STAN-M-2.

Hebel, K, 1989. "Javelina: An Environment for Digital
Signal Processing Software Development." Computer
Music Journal 13(2) Summer 1989. Reprinted in S.
Pope (Ed.) The Well-Tempered Object, Cambridge, MA:
MIT Press, 1991.

Heinsohn, J. Kudenko, D. Nebel, B. Profitlich, H.-J.
1994. "An empirical analysis of terminological
representation systems." Artificial Intelligence 2: 367-
397. Germany: Elsevier.

Hoppe, T. C, Kindermann, J. Quantz, A. Schmiedel, M.
Fischer. 1993. Back V5 Tutorial & Manual, Institut
fûr Software und theoretische Informatik, W-1000 Berlin
10, Germany, march 1993.

KORG. Undated. Korg 05R/W Manuel d'utilisation, AI2

Synthesis Module. Korg Inc.
Michalski, R. S. 1983. "A theory and methodology of

inductive learning." in Michalski, R.S., J.G. Carbonell
and T.M. Mitchell, (eds.), Machine Learning: an
Artificial Intelligence approach. Palo Alto, California:
TIOGA Publ. Co. pp. 83-134.

Miranda, E. 1992. From symbols to sounds: an AI-based
investigation of Sound Synthesis (Ph.D. Thesis
Proposal). DAI Discussion Paper, No. 117, Dept. of
Artificial Intelligence, University of Edinburgh.

Openheim, D.V. 1989. "DMIX: An Environment for
Composition." 1989 International Computer Music
Conference . San Francisco: Computer Music
Association.

Openheim, D. V. 1991. "Shadow: An Object-Oriented
Performance System for the DMIX Environment."
Proceedings of the 1991 International Computer Music
Conference, Montréal. San Francisco: Computer Music
Association, pp. 281-284.

Risset, J.C. 1969. "An introductory catalogue of
computer-synthesized sounds". Bell Telephone Labs.

Rodet, X., Potard, Y., Barrière, J.B. 1984. "The CHANT
project : from the synthesis of the singing voice to
synthesis in general." In C. Roads (ed.), The Music
Machine, Cambridge, MA: MIT Press.

Scaletti, C. 1989. "The Kyma/Platypus Computer Music
Workstation." Computer Music Journal 13(2): 23-38.

Serra, X. 1989. A system for sound
analysis/transformation/synthesis based on a
deterministic plus stochastic decomposition. Ph.D.
Thesis, Stanford University.

Vertegaal, R., and E. Bonis. 1994. "ISEE : an intuitive
sound editing environment." Computer Music Journal
18(2) 21-29.

Wessel, D. 1979. "Timbre Space as a Musical Control
Structure." Computer Music Journal 3(2): 45-52.

