
1

A framework for representing knowledge about

synthesizer programming

Pierre-Yves Rolland, François Pachet

LAFORIA-IBP, Université Paris 6, Boîte 169, 4, Place Jussieu, 75252 Paris Cedex

E-mail: roland/pachet@laforia.ibp.fr

From Computer-Aided Synthesis to Computer-Aided Synthesizer

Programming

Our framework stems from the following remark. In an intensive care unit, a

typical nurse knows perfectly well how to use an infusion pump. However, the

nurse may be an "expert" in infusion pump manipulation without necessarily

having any theoretical knowledge of the device nor of medical issues related to

diagnosis, treatment of patients, and so on. She may even be more expert than the

doctor himself. But she knows what she needs to know: some kind of superficial

knowledge about how to use the machine productively and safely. By analogy, we

compare 1) expert patch programmers, who know how to effectively program

synthesizers, and 2) experts in sound synthesis, who know everything about Fourier

transforms and digital processing, but who would be hard pressed to program, say,

a "fatter" sound on a commercial synthesizer (such as a Yamaha SY99, or Korg

05R/W).

We are interested in representing the knowledge manipulated by the first

category of experts, and claim that it is possible to capture substantial chunks of this

knowledge, in order to produce better man-machine patch programming interface.

The CAS paradigm

This observation is the basis of our approach in the domain of computer-aided

synthesizer programming (CASP). From our point of view, the two main goals of

2

CAS are 1) to help musicians create sounds, and 2) to help musicians understand a

synthesis technique.

In order to achieve these goals, CAS systems should have the following

characteristics. First, it should propose a consensual, common vocabulary, shared

between the machine and the user. In particular, the machine and the user must

reach an agreement on ways to describe certain perceived sound characteristics

(amplitude, pitch, timbre, etc.), for instance under the form of adjectives (decaying,

high-pitch, warm etc.). Moreover, a CAS system should represent knowledge about

the synthesis technique itself. For example, a CAS system might encapsulate

knowledge corresponding to the following questions : what is the synthesis model

(e.g. : FM (Chowning 1973), additive synthesis (Risset 1969; Serra 1989)) ? Is there a

physical interpretation of that model ? What synthesis parameters are available (e.g.

carrier frequencies, number of partials etc.) ? What are the constraints between the

various parameter values, particularly in relation to the physical sound-making

phenomenon modeled ? Do particular parameters have direct influences on

perceived sound characteristics ?

Background in CAS systems

The CHANT system (Rodet et al. 1984) is based on the synthesis by rule concept.

Implementing the Formant-Wave-Functions (FOF) model, CHANT addresses the

synthesis of the singing voice, among others. Despite the large number of synthesis

parameters and the complexity of parameter-sound relations, the user can have the

system produce realistic singing sounds by just specifying "surface aspects" such as:

which vowel is to be obtained, at what pitch etc. ISEE, an Intuitive Sound Editing

Environment (Vertegaal and Bonis 1994) allows direct manipulation of timbre in a

four-dimension "timbre space" whose coordinates correspond to timbre parameters,

such as "brightness" which controls the spectral energy distribution, or "overtones".

This approach, which builds upon the concept of 'encapsulation of synthesis

expertise in the synthesis model' (Vertegaal and Bonis 1994), captures expertise

limited to the control of a fixed set of four timbre parameters that have known

3

sound signal characteristics counterparts, e.g. spectrum properties. CHANT and

ISEE are powerful CAS environments that can deal with different synthesis models,

but do not directly address the issue of encapsulating practical expertise pertaining

to one given synthesizer.

The prototype synthesizer implemented in ARTIST (Miranda 1994) produces

human voice sounds using subtractive synthesis. Sounds are described at different

abstraction levels using slot values and user-definable attribute values. Designed to

be an adaptive assistant, ARTIST uses the Artificial Intelligence technique of

Inductive Learning (Michalski 1983) to increase its knowledge about synthesis

through user interaction. The idea of transforming sounds has been introduced in

ARTIST through the Sound Tools module. However the transformations proposed

correspond to elementary operators which, for instance, change the sound's

fundamental frequency.

The Kyma/Platypus platform (Scaletti 1989) is a framework for defining and

manipulating sound objects. Each sound represents a stream of samples, and can be

defined as a composition of other sound objects or a transformation operating on

sound objects. Kyma is intended to give the composer or musician direct access and

control on the sound structure, and provides tools to organize complex sounds. The

Kyma platform has successfully been applied in a variety of applications like the

Javelina system (Hebel 1989). However, the system as such does not aim at

capturing consensual knowledge about sound synthesis, but rather provides a

framework in which composers may define and manipulate their own

organizations of sounds. In a similar spirit, the DMIX system (Openheim 1989) is an

environment for performance and composition. It proposes sophisticated tools and

editors to be used by a composer or a performer. Kyma and Dmix are both

exemplary in their use of object-oriented programming, but they do not make use of

particular knowledge representation techniques.

The study of existing CAS stems the following two observations. First, little

research has been concerned with commercial synthesizers. Most of the systems

4

address sophisticated synthesis techniques, which are not commonplace in the

community of real musicians. Second, most systems propose environments in

which musicians can define, control and manipulate their own sound structures. No

system proposes, yet, to represent the common sense knowledge experts have on

patch programming.

This is what motivates our attempt to study CASP (Computer-Aided

Synthesizer Programming, as opposed to Computer-Aided Synthesis per se.

Assumptions

Our approach to CASP is based on the following two assumptions:

A1. Commercial synthesizer programmers use superficial knowledge

Our hypothesis is that commercial synthesizer programmers use lots of know-

how and very little deep knowledge. The case of FM synthesis is particularly

interesting in this respect. The success story of the DX series showed that lots of

famous patches were designed by people who understood only a limited fraction of

the underlying - and complex - FM theory. Instead, they would use some kind of

superficial knowledge about the complex interactions between the DX parameters,

gained from experience or by studying other patches. Attempts to widespread FM

theory such as (Chowning and Bristow 1986) showed that understanding FM theory

played only a minor role in programming effectively DX synthesizers. Although the

book does contain some theoretical material, emphasis is clearly put on giving

practical hints to musicians. Following is a typical "know how" rule (R) for FM

synthesis; programmers can use it to build sounds without being aware of its

theoretical meaning :

(R) You can get a "tremolo" sound (modulated amplitude) by setting the carrier

frequency to a fixed, low value and the modulator to a variable value, i.e. which

depends on the note played.

A2. Most of the expertise lies in the transformation knowledge

5

It is a well known fact that synthesizer experts have trouble teaching how to

make a sound from scratch. However, they are much more at ease in explaining

how to transform one sound into another.

Based on this observation, we think that most of the expertise lies in the

transformation knowledge. This leads us to represent the knowledge associated to

transformations, rather than to sound structures themselves.

Following are two typical examples of transformation rules that we want our

system to take into account. (R1) is a typical transformation rule that may apply to

virtually any kind of commercial synthesizer providing parameters for a filter

section. The second one, (R2), also applies to most commercial synthesizers, but is

valid only for "harmonic" sounds, i.e. sounds that have a perceived pitch, like piano

tones, as opposed to cymbal tones:

(R1) You can make a sound brighter by increasing the low-pass filter's cutoff

frequency.

(R2) You can make a sound warmer by duplicating the sound and applying a

slight detune - typically 1/10 tone - to the duplicate.

Transformation rules and sound classification

Organization of knowledge

Transformation rules such as the ones above are easy to represent in a

knowledge-based system, e.g. by means of production rules. Of course, as the

examples show, not all transformations are applicable to all kind of sounds. More

precisely, transformations apply to particular origin sound types to produce target

sound types. Target sound types are characterized here by simple adjectives, such as

"warm", "bright", "squeaky", etc. In order to organize those sound types, we need

some kind of classification scheme. Classifying target sound, based for instance on

results of work in the area of timbre perception (Wessel 1979; Grey 1975), is

irrelevant in our context: we are interested in classifying sounds according to what

future transformations they can afford, and not according to the transformations

6

that produced them. For example, we are not interested in classifying "brassy"

sounds within a given typology of sounds. Rather, we are interested in identifying

"sounds-that-may-become-brassy", i.e. sounds for which we know of a particular

transformation that can make them "brassy".

In this scheme being an instance of a sound type means nothing more than being

able to undergo the various transformations associated to that particular sound

type, thus sound type names are not significant. However, since we need names

(e.g. for browsing purposes), we will, by convention, name sound types by suffixing

them with "able", e.g. "brassy-able" or "warm-able". When a sound type affords

several transformations, we give it a compound name, such as "brassy-and-bright-

able". Consequently, each transformation is associated to a particular sound type in

this classification. For instance, transformation (R2) is associated to sound type

"warm-able", (R1) is associated to "brassy-bright-able", and so forth.

The hierarchical relation linking a sound type to one or more parent sound types

indicates a specialization relation. This relation will be interpreted by a classification

mechanism to classify new sounds. As a consequence, transformations associated to

a sound type are inherited: they are also applicable to its children.

A part of a sound hierarchy for the Korg 05R/W synthesizer is shown on Figure

1. Sound types are represented as boxes, while names under boxes indicate

applicable transformations. Arrows represent type/sub type relationships.

7

Sound in general

- bright

- dull

Harmonic-able

Warm-able

- warm

Decaying-able

- decaying

Sustain-able

- sustained

Harmo-decaying-able

- electricPianoLike

Long-able

- long

Short-able

- short

Brassy-able

- brassy

...

Figure 1. A part of the sound type hierarchy for the 05R/W synthesizer

The main task of the system is therefore to classify a sound according to a pre-

defined classification. We will now describe our representation framework, with

which we represent sound types.

The representation framework

The characteristics of the knowledge we want to represent about sound

transformations led us to look for a representation framework integrating both 1)

classification facilities to manipulate sound hierarchies and 2) a procedural

language to express transformations of the current sound. Several attempts have

been made to integrate term classification facilities within object-oriented

programming languages (Cf. e.g. (Yelland 1992)) but integrated system are not

commercially available yet. Moreover, there is a tradeoff to choose in classification

systems, between expressiveness, efficiency and completeness. Among the various

available classification systems (Heinson et al. 1994), we were particularly interested

in the compromise proposed by the BACK system (Hoppe et al. 1993), an

implementation of the Description Logics formalism (see section 4).

8

Description logics to classify sounds

An important characteristics of the sounds we want to model is that — at least

on a superficial level — they may be described in a symbolic fashion, and not

simply as an array of parameter values. For instance, a sound in the Korg 05R/W

decomposes into one to sixteen voices. Each voice in turn decomposes into one or

two tones, each characterized by a filter section , an amplification section, and so forth.

These abstract structures are eventually described in terms of actual parameters

having terminal values, such as attack rate, attack level, sample name, effect

number, etc.

This strong structuring of sounds is well captured by term classification

techniques in which structural relations are stated in a declarative manner by the

user and the system handles all inferences, i.e. classification and subsumption.

OOP to represent transformations

On the other hand, we need to represent transformations effectively and not

only at an abstract level. As we will see, the formalism of Description logics does

not allow to represent and organize transformation easily. Moreover, MIDI

communication as well as user interface are typically a lot easier to program using

object-oriented techniques. Sounds may be represented as instances of sound

classes, and transformations as methods for these classes. We chose Smalltalk-80 for

its acknowledged ease of use, and for its widespread use in the computer music

research community (see CMJ, 13 (2), 1989 for example).

A scheme to link both representations

Having two different knowledge representation paradigms coexist is not

straightforward, mainly because 1) information is redundant. A sound for instance

will be represented both as a concept instance in BACK and as a class instance in

Smalltalk and 2) the representations are not compatible as there is no clear relation

between a concept and a class. We propose a scheme for coupling the two

representations (section 6).

9

The classification-oriented representation of sounds

Description logics and BACK

For about fifteen years a number of research efforts in knowledge representation

have focused on the development of representation languages with well-founded

semantics, called description logics (DLs, previously called terminological logics). DLs

propose a hierarchical knowledge organization in which every concept inherits

information from more general ones. Also, the basis for an structuring of concepts is

provided under the form of inter-concept links or roles.

More than a dozen DL implementations, referred to as Terminological

Representation Systems, have been proposed to date (Heinsohn et al. 1994), derived

from the early system KL-ONE (Brachman 1985). In such systems, information

retrieval can take diverse forms including subsumption tests and classification requests,

as we will be explain now.

A brief overview of BACK V5

Our Terminological Representation System is the Berlin Advanced

Computational Knowledge representation system (BACK). In our project we have

used the Prolog-based, public domain BACK Version 5 system. In this sub-section

BACK V5's main features are described. More details can be found in (Hoppe et al.

1993).

Concepts are sets of objects specified either intensionaly or extensionaly, and

objects are instances of one or more concepts. In this work we have been using

primitive and defined concepts. Conditions specified in the introduction of a concept

are necessary conditions for the classification of its instances when the concept is

primitive, necessary and sufficient conditions when the concept is defined. Roles are

binary relations between objects. For any given object o, the objects o1, ..., on that are

linked to o through the binary relation R corresponding to role r, (i.e. ∀ i, i � {1, ...

n}, R(o, oi)), are called role fillers for role r and object o. Numerous examples will be

provided in the next sections to illustrate all of these rather abstract notions.

10

Providing information to BACK V5 can be done through term introductions,

object creations - called assertions - or through the use of non-definitional rules

(RNDs) which impose particular logical relations between given concepts and roles.

Besides, various kinds of information can be retrieved. Retrieving the result of the

classification for an object o yields the list of concepts o instantiates. Querying the

system for concept subsumption, on the other hand, produces a Boolean answer as

to whether a concept c1 is more specific than a concept c2, i.e. whether any instance

of c1 is also an instance of c2.

Description of sounds as seen by the synthesizer manufacturer

In the Korg 05R/W, a sound is internally represented as the list of synthesis

parameter values, which are numbers or character strings. The "technical

description" of sounds corresponds to this low-level representation. Figure 2 shows

the synthesis architecture as presented by the manufacturer. The signal available at

the synthesizer's outputs is obtained by adding the signals produced by up to 16

independent structures and passing the resulting signal through an effect processor.

Each structure includes one or two interdependent sub-structures. Using technical

terms, a sound is produced by mixing 1 to 16 independent voices—each made up of

one or two tones—eventually processed by some effect processors.

In Figure 2, square boxes represent audio signal generation or processing units

(e.g., Oscillator, Variable Digital Filter (VDF), Effect Processor, Panoramics unit)

while rounded cornered boxes represent envelope or modulation generating units

(e.g. VDF Envelope Generator). Envelope generators produce angled line type

functions which are used to control signal processing unit parameters, as explained

below. Similarly, modulation generators produce random or periodic control

functions whose frequency, if any, has an order of magnitude of 10 Hz.

A tone structure is composed of several such units. An Oscillator unit generates

a waveform from a library of samples stored in the Read Only Memory. The

waveform's "pitch" is controlled by the Pitch Modulation Generator and the Pitch

Envelope Generator. The resulting signal passes through a Variable Digital Filter, a

11

high-pass filter whose cutoff frequency's variations are controlled, like for pitch, by

an Envelope Generator (EG) and a Modulation Generator (MG), etc.

Other units in a tone structure include a Panoramics unit which manages the

stereo routing of the signal (left to right). As already mentioned, a voice can

decompose into one or two tones. A single-tone voice is roughly identical to a tone,

while a double-tone voice corresponds to the grouping of two tones which share the

same Pitch EG and VDF MG. The Effect Processor allows to use simultaneously two

effect types picked up from a list of 47 possible types (delays, choruses, etc.).

Examples of synthesis parameters stored in the 05R/W's memory are 'Tone 2 of

Voice 7 VDF1 EG's Attack Level' (a number between 0 and 99) or 'Effect Processor's

Second Effect's name' (a character string such as "Hall-reverb").

Voice 2

Voice 16

PITCH MG 1

Pitch Modulation Generator

for Oscillator 1

OSC1

Oscillator 1

VDF1

Variable Digital Filter

for Oscillator 1

PAN

Panoramics

for Oscillator 1

VDA1

Variable Digital Amplifier

for Oscillator 1

VDF1 EG

Enveloppe Generator

for VDF 1

VDA1 EG

Enveloppe Generator

for VDA 1

OSC2

Oscillator 2

VDF2

Variable Digital Filter

for Oscillator 2

PAN

Panoramics

for Oscillator 2

VDA2

Variable Digital Amplifier

for Oscillator 2

PITCH MG 2

Pitch Modulation Generator

for Oscillator 2

VDF2 EG

Enveloppe Generator

for VDF 2

VDA2 EG

Enveloppe Generator

for VDA 2

PITCH EG

Pitch Enveloppe Generator

VDFMG

VDF 1&2 Modulation

Generator

Voice 1

Tone 1.1

Tone 1.2

Effect
Processor

Stereo audio
output

Figure 2. Korg's sound representation: diagram of the 05R/W synthesis architecture.

Representation of the sounds in BACK

12

We built up a representation of sounds using the formalism of Description

Logics, by introducing two kinds of concepts: fundamental and abstract concepts.

fundamental concepts are used to represent the various entities shown on Figure 2;

abstract concepts represent the structural part of the programmer's expert

knowledge. We will now examine these two concept categories in more detail.

Fundamental concepts

We represent the technical description of sounds (as previously introduced) by a

set of Back terms. We call these terms "fundamental" because they are a quasi direct

transcription of the synthesis model architecture of the synthesizer.

For example, the tone concept cannot be defined using less specific concepts

other than a special preset concept called anything. Therefore, the tone concept is

introduced using necessary classification conditions with respect to the

classification of its instances, which is materialized by a primitive concept

introduction, denoted by the symbol :< as follows:

tone :< anything

The waveform concept is defined (symbol :=) as its extensive introduction yields

necessary and sufficient instance classification conditions. For obvious reasons,

instead of listing all possible waveforms (over 300), we provide here an excerpt with

just a few examples.

waveform := attribute_domain ([sine, square, saw, organ,

fluteLoop, whiteNoise]).

The primitive role hasWaveform can then be introduced to represent which

waveform a tone is based on. We call such a role terminal as its fillers represent

actual synthesis parameters as opposed to abstract structures like voices or

envelopes.

hasWaveform :< domain(tone) and range(waveform).

Another defined concept is doubleVoice, which is introduced based on the

primitive concept voice, with number restrictions applying to the role hasTone:

doubleVoice := voice and exactly(2, hasTone).

13

Abstract concepts

On top of this first layer of representation, we build up a hierarchy of concepts

that represent the structural part of the programmer's expertise. As will be

explained later, the concepts introduced here are used to define transformations.

We divide these concepts into three categories:

Abstract concepts built from fundamental concepts. These include partial

descriptions of sounds, such as heldTimeFunction, defined as a TimeFunction

whose 'sustainLevel' value is greater or equal to 1. In synthesis terms, this allows to

describe, for instance, sounds whose loudness eventually stabilizes to a non-zero

value. On the 05R/W, this is obtained by setting the Time Variant Amplifier

Envelope Generator's Sustain Level to a strictly positive value.

timeFunction and the (sustainLevel, ge(1))

 => heldTimeFunction.

Similarly, we introduce abstract concepts that, as will be seen below, play a part

in building up the brassy-able sound type's representation. Figure 3 shows the

manner in which these interdependent, abstract concepts are introduced.

14

FilterEnveloppe and heldTimeFunction
 and the(attackTime, ge(17) and le(25))
 and the(attackLevel, ge(85))
 and the(decayTime, ge(60) and le(75))
 and the(intermediateLevel, ge(25) and
 le(35))
 and the(heldLevel, ge(25) and le(35))
 => brassyAbleFilterEnv.

filter and the(hasEnveloppe,
 brassyAbleFilterEnv)
 => brassyAbleFilter.

brightTone and the(hasFilter, brassyAbleFilter)
 and the(hasAmp, brassyAbleAmp)
 => brassyAbleTone.

voice and atleast (1, hasTone, brassyAbleTone)
 => brassyAbleVoice.

Figure 3. Example of code used for introducing abstract concepts

Other examples of abstract concepts which reflect structural expert knowledge

are those describing 'non transformable' sounds. Contrary to the above abstract

concepts, these concepts provide complete descriptions of sounds which do not

afford any particular transformation but which are used for describing

transformable sounds:

sound and no(hasVoice, voiceWithInharmonicTone)

 => harmonicSound

Note that since any sound type is subsumed by the transformable sound type

soundInGeneral, even instances of non transformable sounds types can undergo

some general transformations, such as 'make bright' or 'make dull'.

Concepts describing transformable sounds. Figure 4 shows a few examples of

such concepts.

15

harmonicSound and some (hasVoice, brassyAbleVoice)
 => brassyAbleSound

sound and all(hasVoice, sustainAbleVoice)
 => sustainAbleVoice.

sound => soundInGeneral.

Figure 4. Examples of transformable sounds.

Concepts representing transformations themselves. To each sound type we

associate a list of transformations, represented as mere character strings, as

illustrated on figure 5. This list is materialized by a sub-concept of

possibleTransformations, an extensional concept which lists all possible

transformations for all existing sound types.

possibleTransformations:= attribute_domain ([warm,
brassy, dull, decaying (...)]).

affordsTransformation :< domain(sound) and range
(possibleTransformations).

brassyAbleSound :< affordsTransformation : brassy.

WarmAndSharpAbleSound :< affordsTransformation : warm
and sharp.

Figure 5. The BACK representation of transformations.

The Object-Oriented representation of sounds

Representing sounds as objects, in the sense of object-oriented programming, is

particularly natural in our context, where emphasis is put on transformations. Each

transformation is represented by a Smalltalk method defined in class

CurrentSound. This method modifies the values of "terminal parameters", using a

pre-defined set of modifiers.

16

For instance, Figure 6 shows the Smalltalk method that makes a sound

"sustained":

beSustained
 tones do: [:t | t be: #held].

Where be: is defined as follows:

be: aSymbol
 aSymbol = #held ifTrue:
 [filterEnvelope decayTime: 99.
 ampEnvelope decayTime: 99].
 aSymbol = #... ifTrue: [...].

Figure 6. A Smalltalk method that makes a sound "sustained".

Integration

In order to link these two representations, we need some kind of integration

scheme. This scheme is based on two principles, related respectively to concepts

and transformations:

Concepts

Each fundamental concept is represented by a Smalltalk class. Each role of the

concept is represented by an instance variable of the class. Of course, the Smalltalk

representation is more rudimentary than the BACK one: cardinality and types are

not represented. An actual sound is represented by an instance of class

CurrentSound, and its parameters by instances of the corresponding classes.

Transformations

Transformations are represented by methods associated to class

CurrentSound. Each method modifies the current sound by changing some values

of its parameters. Therefore, the semantics of the BACK symbol representing

transformations is given by the corresponding Smalltalk method.

This yields a two-level representation framework with two links, as shown in

Figure 7.

17

voice, tone

terminal roles

voice, tone

terminal roles

Smalltalk BACK

fundamental conceptsCurrent sound

intermediary concepts

sound types

List of

Transformations

Methods

classification

request

result

Figure 7. The two representations of sounds and their connection.

Execution

A session with our system is described by the following iterative cycle of

operations :

Step 1. The user chooses an initial patch. This initial patch may be either one

of the user's own patches or one selected from an external library, including patches

created during past sessions.

Step 2 The patch is transmitted to BACK to be classified. As a result, BACK

generates the list of sound types instantiated, together with the associated

transformations. This data is then transmitted to Smalltalk.

Step 3. The user selects one of the proposed transformations. Parameters in

the currentSound Smalltalk object are modified accordingly, and actual

synthesizer parameters are changed so the user can play and listen to the new

sound.

Step 4. Back to step 2, and loop until the user is satisfied with the current

sound.

18

Figure 8 shows an example of a typical user session. In order to provide some

flexibility, our system offers an alternative to step 3 in which the user directly

changes individual synthesizer parameters. This still allows for the resulting sound

to get classified and thus undergo further transformation cycles.

Initial patch

Classification

request

SMALLTALK

etc...

Classification result

Sound types

warmAndSpaciousAble
 - warm

 - spacious

Transformations

soundInGeneral
 - bright

 - dull

Classification
request

Classification result

Sound types

brassyAble - brassy

Transformations

decayAble - decaying

etc. etc.

BACK

User consultation

'make sound : bright'

currentSound

User consultation

'make sound : brassy'

currentSound

currentSound

Figure 8 An example session.

Defining a new sound type

In the current state of our prototype, introducing a new sound type in the

classification is not an easy task. It implies three modifications to the system:

First, adding a set of terms that describe the new sound type, as a function of

existing sound types and fundamental concepts.

19

For instance, adding sound type choralAndBreathyAble could lead to the

following introductions (see Figure 9):

padWave := aset([organ, fluteLoop, sine, square],
 waveForm).

tone and sustainedTone
 and the(hasWaveform, padWave)
 => padTone.

(...)

softSound and padSound
 and atLeast(1, hasVoice, doubleVoice)
 => choralAndBreathyAbleSound

Figure 9. Instructions for adding sound type 'choralAndBreathyAble' '

Second, specifying which transformations the new sound type affords, at the

BACK level:

choralAndBreathyAbleSound :< affordsTransformation :

 choral and breathy.

Third, specifying, at the Smalltalk level, the transformations themselves, by

defining instance methods for class CurrentSound (see example on Figure 10).

beChoral
 self voices detuneOfPercentHalfTone: 5; beSymetric.
 self setVibratosOfKind: #Choral.

where beSymetric, detuneOfPercentHalfTone: and

setVibratosOfKind: are Smalltalk methods such as the one below:

detuneOfPercentHalfTone: aPercentage
 self firstTone pitchFine: (0.5 * aPercentage) negated.
 self secondTone pitchFine: (0.5 * aPercentage).

Figure 10. A Smalltalk method specifying a transformation

Conclusion

20

The main contribution of this work concerns the use of a sophisticated AI

representation formalism, Description Logics, to capture superficial knowledge

about synthesizer patch programming. This knowledge can then be exploited to

help musicians browse through the timbre space of a commercial synthesizer in an

intuitive way, thereby reducing the complexity of the sound making process.

A prototype was built and tested with the Korg 05R/W synthesizer. This work is

still in progress, and our efforts concentrate on: 1) refining the user interface, 2)

improving the communication between BACK and Smalltalk (using DLL), and 3)

experiment our system with novice users. We also plan to provide the system with

a learning capability (e.g. based on inductive learning from examples), which will

allow the definition of new sound types by presenting sets of example patches to

the system. Further, transformations will be definable from sets of patch couples,

each containing an example of origin sound and its associated transformed sound.

References

Brachman, R.J., and J.G. Schmolze, 1985. "An overview of the KL-ONE knowledge

representation system." Cognitive Science 9(2): 171-216.

Chowning, J. and D. Bristow. 1986. FM Theory & applications by musicians for

musicians. Yamaha Music Foundation Corp.

Goldberg, A., and D. Robson. 1983. "Smalltalk-80 : The language and its

implementation." Reading, MA: Addison-Wesley.

Grey, J. 1975. An Exploration of Musical Timbre. Ph.D. dissertation, Stanford

University Psychology Dept. CCRMA Report STAN-M-2.

Hebel, K, 1989. "Javelina: An Environment for Digital Signal Processing Software

Development." Computer Music Journal 13(2) Summer 1989. Reprinted in S. Pope

(Ed.) The Well-Tempered Object, Cambridge, MA: MIT Press, 1991.

Heinsohn, J. Kudenko, D. Nebel, B. Profitlich, H.-J. 1994. "An empirical analysis of

terminological representation systems." Artificial Intelligence 2: 367-397.

Germany: Elsevier.

21

Hoppe, T. C, Kindermann, J. Quantz, A. Schmiedel, M. Fischer. 1993. Back V5

Tutorial&Manual, Institut fûr Software und theoretische Informatik, W-1000

Berlin 10, Germany, march 1993.

KORG. Undated. Korg 05R/W Manuel d'utilisation, AI2 Synthesis Module. Korg Inc.

Michalski, R. S. 1983. "A theory and methodology of inductive learning." in

Michalski, R.S., J.G. Carbonell and T.M. Mitchell, (eds.), Machine Learning: an

Artificial Intelligence approach. Palo Alto, California: TIOGA Publ. Co. pp. 83-134.

Miranda, E. 1992. From symbols to sounds: an AI-based investigation of Sound Synthesis

(Ph.D. Thesis Proposal). DAI Discussion Paper, No. 117, Dept. of Artificial

Intelligence, University of Edinburgh.

Openheim, D. V. 1989. "DMIX: An Environment for Composition." in Proceedings of

the 1989 International Computer Music Conference, Columbus, Ohio. San Francisco:

Computer Music Association.

Openheim, D. V. 1991. "Shadow: An Object-Oriented Performance System for the

DMIX Environment." Proceedings of the 1991 International Computer Music

Conference, Montréal, Canada. San Francisco: Computer Music Association, pp.

281-284.

Risset, J.C. 1969. "An introductory catalogue of computer-synthesized sounds". Bell

Telephone Labs.

Rodet, X., Potard, Y., Barrière, J.B. 1984. "The CHANT project : from the synthesis of

the singing voice to synthesis in general." In C. Roads (ed.), The Music Machine,

Cambridge, MA: MIT Press.

Scaletti, C. 1989. "The Kyma/Platypus Computer Music Workstation." Computer

Music Journal 13(2): 23-38. Reprinted in S. Pope (Ed.), the Well-Tempered Object,

Cambridge, MA: MIT Press, 1991.

Serra, X. 1989. A system for sound analysis/transformation/synthesis based on a

deterministic plus stochastic decomposition. Ph.D. Thesis, Stanford University.

Vertegaal, R., and E. Bonis. 1994. "ISEE : an intuitive sound editing environment."

Computer Music Journal 18(2) 21-29.

22

Wessel, D. 1979. "Timbre Space as a Musical Control Structure." Computer Music

Journal 3(2): 45-52.

Yelland, P. 1992. "Experimental Classification Facilities for Smalltalk." in Proceedings

of OOPSLA' 92, Vancouver, Canada, pp. 235-246.

