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ABSTRACT

We describe a recursive algorithm to quickly compute the
N nearest neighbors according to a similarity measure in
a metric space. The algorithm exploits an intrinsic prop-
erty of a large class of similarity measures for which some
parameterp has a positive influence both on the precision
and the cpu cost (precision-cputime tradeoff). The algo-
rithm uses successive approximations of the measure to
compute first cheap distances on the whole set of possible
items, then more and more expensive measures on smaller
and smaller sets. We illustrate the algorithm on the case
of a timbre similarity algorithm, which compares gaussian
mixture models using a Monte Carlo approximation of
the Kullback-Leibler distance, wherep is the number of
points drawn from the distributions. We describe several
Monte Carlo algorithmic variants, which improve the con-
vergence speed of the approximation. On this problem,
the algorithm performs more than 30 times faster than the
naive approach.

Keywords: Nearest Neighbor, Similarity Measure,
Timbre, Large Databases.

1 INTRODUCTION

Algorithms for fast nearest neighbor (NN) searching in
general metric spaces are of considerable interest for
content-based retrieval in large music databases. Answer-
ing NN queries requires computing the relative distance
between complex data objects, such as songs in audio or
symbolic format, which is typically a very costly opera-
tion.

1.1 Metric Space Index Structures

One approach for speeding-up NN search is to use pre-
built index structures. Traditional index structures, such
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as B+-trees or KD-trees (Samet, 1989), only work for
datasets which can be represented in a suitable vector
(euclidean) space, i.e. for which there exists an ordering
of the data that preserves relative similarities. This holds
for a number of simple similarity functions, e.g. those
based on the euclidean distance between feature vectors
computed from audio (Wold and Blum, 1996). In Reiss
et al. (2001), we reviewed a number of such indexing
techniques in the context of Music Information Retrieval.
However, a large number of similarity algorithms are not
suitable to such vector-space index structures, as they only
provide a distance function or metric to measure the dis-
similarity between data points. This is notably true of sim-
ilarity functions based on statistical pattern recognition,
such as timbre similarity (Aucouturier and Pachet, 2004)
where songs are modeled with statistical models and the
models compared with distribution comparison measures
such as Kullback-Leibler or transportation distances.

There has been a number of proposals for metric-
space index structures, most of which exploit the triangle-
inequality property of the distance function to prune dis-
tance calculations during searching. Obviously, one may
first have to verify that the distance measure indeed ver-
ifies the triangle inequality, as e.g. Vidal et al. (1988)
for the edit-distance. TheApproximating and Eliminat-
ing Search Algorithm(AESA) (Juan et al., 1998) performs
NN search in approximately constant average-time, at the
expense of pre-processing the matrix of pairwise distances
between objects. This is typically well suited for matching
incoming objects against a small (a few thousand) dataset
of pre-computed prototypes, e.g. isolated word recogni-
tion tasks. However, as the space requirements of typical
music databases keep increasing (for instance, the SONY
Connect service1 offers more than 700,000 tracks as of
2004), computing the wholeN2 similarity matrix is sim-
ply not feasible. The M-tree (Ciacca et al., 1997) and the
Multi-vantage point (MVP) tree (Bozkaya and Ozsoyo-
glu, 1999) are radius-based indexing methods that do not
require the computation of the whole similarity matrix,
while still preserving fast access time. In these structures,
the data is hierarchically organized in clusters defined by a
center and a radius (the maximum distance from the center
to any point in the cluster). If a query is too far from the
center of a cluster, by virtue of the triangle inequality, all
the points within the cluster can be pruned, and the corre-

1http://www.connect.com



sponding distances calculations can be spared. Miranker
et al. (2003) have used, compared and improved such tech-
niques in the context of large image and biological protein
structures databases. A recent application of vantage point
indexing to melodic similarity in music databases can be
found in Typke et al. (2003).

1.2 Exploiting the Tradeoff Between Precision and
Cputime

In this paper, we propose a generic algorithm for fast NN
search in metric spaces which relies neither on an index
structure2, nor on the verification of the triangle inequal-
ity by the distance measure. The algorithm exploits an
intrinsic property of a large class of similarity algorithms,
which exhibit aprecision-cputime tradeofffor some pa-
rameterp (tradeoff parameter), i.e. for which both the
precision and the cputime increase withp.

Many music similarity measures proposed in the lit-
erature exhibit this precision-cputime tradeoff. This is
notably true for pattern recognition distance measures,
such as Foote (1997); Welsh et al. (1999); Pampalk et al.
(2003); Aucouturier and Pachet (2004). In such measures,
the distributions of each song’s frame-based feature vec-
tors (e.g. Mel-Frequency Cepstrum Coefficients MFCCs)
are modeled (e.g. with Gaussian Mixture Models GMMs)
then compared (e.g. using Kullback-Leibler). Many can-
didates exist for the tradeoff parameterp:

• p may be the size of the feature vector. For instance,
the number of MFCCs typically influences the pre-
cision of the measure (as illustrated e.g. in Aucou-
turier and Pachet (2004)), but also the dimension of
the model, hence the cpu time both for learning and
comparing.

• p may also be the size of the model, e.g. the number
of gaussian components in a GMM, or the bin size of
a histogram. The more complex the model, the more
precise the measure3, but also the more expensive the
learning and the comparison.

• p can also be found at the model comparison stage.
In Section 3, we consider a Monte-Carlo sampling
approximation of the Kullback Leibler distance be-
tween GMMs: the more samples are drawn from
the GMMs, the more precise is the approximation
by virtue of the central limit theorem, but also the
more expensive are both the sampling and the dis-
tance computation.

We propose to exploit the precision-cputime tradeoff
of such distance algorithmsA to efficiently calculate the
result of NN queries. We usen successive refinements of
A to compute first cheap, unprecise distances (i.e.A(p)
for p small) on the whole set of possible items, then
more and more expensive and precise distances (i.e.A(p)
for p big) on smaller and smaller sets. If the precision
PREC(p) of the distance measure increasesfaster4 than

2therefore, it is compatible and complementary with the
above-described metric index structures

3this is not taking into account the curse of dimensionality,
see Bishop (1995)

4in a sense to be defined in Section 2

the cputimeCPU(p), then we will show that the cumu-
lated cpu time of the successive steps usingA(p0), A(p1),
...,A(pn−1) may be a lot smaller than the direct compu-
tation of the most precise distanceA(pn−1) on the whole
set of items.

This approach can be viewed and implemented as a
planning wrap-up around an existing distance measure, to
speed up the associated nearest neighbor search. We show
that dramatic speed-up can be achieved without modifying
the implementation of the underlying distance measure.

Section 2 presents a general formulation of the algo-
rithm, discusses the required condition on the distance
measure, and explains the optimization process to find
the optimal sequence of steps that yields the smallest to-
tal cputime. In Section 3, we illustrate the algorithm on
the case of NN queries, using a timbre similarity algo-
rithm (Aucouturier and Pachet, 2004), which compares
Gaussian mixture models using a Monte Carlo approxi-
mation of the Kullback-Leibler distance, where the trade-
off parameterp is the number of points drawn from the
distributions. We describe several Monte Carlo algorith-
mic variants, which improve the convergence speed of the
approximation, and report speed improvement factors as
high as 30.

2 RECURSIVE NEAREST NEIGHBORS

In Section 1.2, an algorithm for fast NN searching in met-
ric spaces was sketched out. This algorithm can be seen as
a particular illustration of a more general approach which
we present in this section.

In this more general context, we are interested in com-
puting the elements of a setS that satisfy a given criterion
c, called the target criterion. Note that computing the NN
of a given item with respect to a given measure is a par-
ticular instance of this schema. The approach we present
applies to any target criterion that can be approximated by
a series of criteria with the following property: rough ap-
proximations of the target criterion are easy (fast) to com-
pute, whereas good (precise) approximations of the target
criterion take longer. Moreover, approximations are faster
to compute than the target criterion itself.

The standard approach to computing the setN of ele-
ments ofS that satisfyc is to evaluatec against every item
in S, retaining only those items that satisfyc. Roughly
speaking, our approach consists in starting with a first cri-
terion that can be evaluated quickly, to eliminate irrele-
vant items, and then, to progressively evaluate criteria that
are better approximations of the target criterion, finishing
with the target criterion itself, to achieve the task. The idea
behind this strategy is that if the precision of the succes-
sive criteria increases faster than their computation cost,
we can save a substantial amount of computation time,
because criteria that are expensive to evaluate will be eval-
uated against fewer items.

2.1 Definitions and Assumptions

Let us first introduce some necessary definitions and con-
ventions:

• S is a finite set.
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Figure 1: Instead of computingN directly by applyingc,
we iteratively compute theNi for i = 0, 1, ..., n

• c is a criterion defined overS

c : S → {true, false} (1)

We callc thetargetcriterion.

• c0, c1, ...,cn are criteria defined overS that approxi-
matec with increasing precision, with the convention
thatcn = c.

• N is the subset ofS containing those elements that
satisfyc. The goal of the algorithm is to computeN .

• Similarly, Ni is the subset ofS that contains those
elements that satisfyci−1. By convention, we define
N0 = S.

• t(ci) < t(ci+1)∀i ∈ [0, n−1] wheret(ci) denotes the
cpu time needed to computeci(x) for any element
x ∈ S.

Note that the two following properties are a formal-
ization of the type of algorithms described in Section 1.2
(precision-cputime tradeoff)

Property 1 c0, c1, ..., cn approximatec with increasing
precision

Property 2 The cost of computingci increases withi, i.e.
t(ci+1) > t(ci)

The algorithm can be described by a simple idea, illus-
trated in Figure 1: instead of computingN directly by ap-
plying c, we iteratively compute theNi for i = 0, 1, ..., n.

Property 3 Nn ⊆ Nn−1 ⊆ ... ⊆ N1 ⊆ N0 = S (i.e.
ci+1 ⇒ ci)

When Property 3 holds on theNi sets, it is straightforward
to show thatci(Ni) = ci(S) = Ni+1. In other words,
one can computeNi+1 by applyingci to Ni instead of
applyingci toS, thus saving time sinceNi is smaller than
S.

Figure 2 illustrates the algorithm. In this figure, we
assume thatS = N0 = {x1, x2, ..., xp} and that thexi

are ordered so thatN = {x1, x2, ..., xk} and more gen-
erally Ni = {x1, x2, ..., xki

}. This reordering is made
possible by the inclusion relationship between theNi sets
assumption. The top part, with the horizontal arrow la-
beledc = cn, represents the standard way of computing
N , i.e. evaluatec on every element ofS, and retain only
the items that satisfyc. The cost of this approach is:

t(c)|S| = t(c)|N0| (2)

wheret(c) is the time it takes to evaluate function c on
one item and|S| is the cardinality ofS. The rest of the
figure illustrates our approach, reading from left to right.
The leftmost column of the figure, labeled “S” is an enu-
meration ofS. The nearest column, labeled “N1”, can be
understood as follows: we evaluatec0 on every item in

S, which yieldsN1, the set of items that satisfyc0. This
is represented by the oblique arrow labeled “c0”. N1 is
enumerated vertically in this column. The cost of this step
is:

t(c0)|S| = t(c0)|N0| (3)

Reading Figure 2 from left to right illustrates that we iter-
atively applyc0, c1, ..., cn to N0,N1, ...,Nn. Eventually,
cn = c, the target criterion, is evaluated againstNn, yield-
ing N . The overall cost of this approach is the sum of the
cost of each step:

n∑

i=0

t(ci)|Ni| (4)

Our approach is interesting only in those situations where:

n∑

i=0

t(ci)|Ni| < t(c)|N0| = t(c).|S| (5)

On Figure 2, the successive sets computed are represented
vertically, and the successive criterion evaluations are rep-
resented horizontally. The costs can be visualized graphi-
cally if we assume that the proportions are respected, i.e.
that the height of a set is proportional to its cardinality
and that the width of a column is proportional to the cost
of the corresponding criterion evaluation. The overall cost
of our approach corresponds to the light gray surface (the
upper-left “triangle”), while the cost of the standard ap-
proach is the hashed surface. With this graphical repre-
sentation, it appears that if theNi (the heights) decrease
fast enough and that thet(ci) (the widths) simultaneously
increase fast enough with increasingi, the light gray sur-
face will be substantially smaller than the hashed surface.
This is what we discuss in the next section.

2.2 Efficiency of the Approach

Our approach is interesting when it saves time, i.e. when
equation 5 holds. This gives us a set of necessary con-
ditions for the method to run faster than the standard ap-
proach. We will construct them recursively onn, starting
with the casen = 1. Forn = 1, equation 5 becomes:

t(c0)|N0| + t(c1)|N1| < t(c).|S| (6)

⇒ t(c0) < t(c) |N0|−|N1|
|N0|

= t(c) |S|−|N1|
|S| (7)

Forn = 2, equation 5 becomes:

t(c0).|N0| + t(c1).|N1| + t(c2).|N2| < t(c).|S| (8)

wherec2 = c. If we assume that equation 7 holds, we get
the sufficient condition:

t(c1) < t(c)
|N1| − |N2|

|N1|
(9)

and so on. Finally, we have the following sufficient con-
ditions for our approach to be interesting in terms of com-
putation time:

t(ci) < t(c)
|Ni| − |Ni+1|

|Ni|
, ∀i ∈ [0, n − 1] (10)



Figure 2: Illustration of the algorithm. The cumulated costof the successive steps appears as the light gray area, whereas
the cost of the direct NN calculation appears as the strippedarea.

|Ni| is related to the precision with whichci approx-
imates the target criterionc5: the less precise isci, the
larger is the smaller set of items that satisfyci which con-
tains all items that satisfyc. Equation 10 thus requires that
at each stepi, the precision of theci’s increases faster than
their complexity.

2.3 Implementing the Approach

For a given problem, one thus needs to find a sequence
of steps (the successiveci’s andNi’s) that both verifies
propertiesP1, P2, andP3 and equation 10. Equation 10
holds on the cardinalities of the successive result sets (the
Ni sets). Therefore, our approach is worth applying to
problem for which the cardinalities of the result sets can
be computed or estimated easily. Section3 illustrates a
case where the cardinalities are estimated once, even at a
high cost, for a whole family of criteria.

For a given setS and a given criterionc, our approach
is based on the existence of a series(ci)i that satisfies
propertiesP1, P2, andP3. Such a series can easily be
found for the class of criteria that possess a tradeoff pa-
rameterp. Let us assume thatp takes value in a finite
set P = {0, ..., n} (using quantization if needed). In
this context, the series(ci)i∈P does not necessarily satisfy
equation 10, and if it does, there may exist sub-series of
(ci)i∈P that allow a more efficient implementation of our
approach. More precisely, given setS and criterion series
(ci)i∈P , there exist2n sub-series(c′i)i∈P ′⊆P of (ci)i∈P ,

5In Section 3, we will show that in terms of information re-
trieval, |Ni| is related to the precision at recall 1

corresponding to different steps of the approach. (Note
that if (c′i)i is a sub-series of(ci)i, an itemc′j is one of
the ci with j ≤ i, and similarly,N ′

j = Ni.) The cost of
the approach for(c′i)i is

∑
i∈P ′ t(c′i)|N ′

i |. Among those
sub-series, at least one of them is optimal, i.e. there is
at least one for which minimizing

∑
i∈P ′ t(c′i)|N ′

i |. Note
that when the optimal sub-series contains only the target
criterionc, our approach equals the standard approach.

To implement the approach optimally, one needs to
compute the optimal(c′i)i. In general, one cannot com-
pute the cost of every2n sub-series. However, this can be
achieved very efficiently using dynamic programming, as
illustrated by the following algorithm:

bestSubSeries(n)
if memValue(n)already computed

return memValue(n)
min ← +∞
for p ← 0 to n− 1

tmp ← bestSubSeries(p)
c ← cost(tmp ∪ {n})
if c < min

result ← tmp ∪ {n}
min ← c

end if
end for
memValue(n) ← result
return result

end bestSubSeries

cost(listOfIndices)∑
t(c′i)|N

′

i | for i in listOfIndices
end cost



3 TIMBRE SIMILARITY
EXPERIMENTS

In this section, we apply the algorithm described in Sec-
tion 2 to the practical task of calculating the n nearest
neighbor of a song according to the timbre similarity mea-
sure presented in Aucouturier and Pachet (2004).

3.1 The Precision-Cputime Tradeoff

We sum up here the timbre similarity algorithm as pre-
sented in Aucouturier and Pachet (2004). The signal is
first cut into frames. For each frame, we estimate the spec-
tral envelope by computing a set of Mel Frequency Cep-
strum Coefficients (MFCCs) (Rabiner and Juang (1993)).
We then model the distribution of the MFCCs over all
frames using a Gaussian Mixture Model (GMM). A GMM
estimates a probability density as the weighted sum ofM
simpler Gaussian densities, called components or states of
the mixture. (Bishop (1995)):

p(xt) =

m=M∑

m=1

πmN (xt, µm, Σm) (11)

wherext is the feature vector observed at timet, N is
a Gaussian pdf with meanµm, covariance matrixΣm,
and πm is a mixture coefficient (also called state prior
probability). The parameters of the GMM are learned
with the classic E-M algorithm (Bishop (1995)).

We then compare the GMM models to match the tim-
bre of different songs, which gives a similarity measure
based on the audio content of the music. We use a Monte
Carlo approximation of the Kullback-Leibler (KL) dis-
tance between each duple of models A and B. The KL-
distance between 2 GMM probability distributionspA and
pB (as defined in (11)) is defined by :

d(A, B) =

∫
pA(x) log

pB(x)

pA(x)
dx (12)

The KL distance can thus be approximated by the empiri-
cal mean :

˜d(A, B) =
1

n

n∑

i=1

log
pB(xi)

pA(xi)
(13)

(wheren is the number of samplesxi drawn according to
pA) by virtue of the central limit theorem :

lim
n→∞

(
1

n

n∑

i=1

Xi − E(X)) =
1√
n
N (0, σ2) (14)

whereX is the random variablelog pB(x)
pA(x) , Xi a realiza-

tion of X , E(X) the mean ofX andN (0, σ2) a normal
distribution of mean0 and varianceσ2, the variance ofX .

The precision of the approximation is clearly depen-
dent on the number of samplesn drawn from the distrib-
utions, which we call Distance Sample Rate (dsr). Figure
3 shows the influence ofdsr on the precision of the mea-
sure, as defined in Aucouturier and Pachet (2004) (on a

cpu time

Figure 3: Influence of the distance sample rate on the pre-
cision and cpu time of the timbre similarity algorithm

semi-logarithmic scale). We see that the DSR has a posi-
tive influence on the precision when it increases from 1 to
2000, and that further increase has little if any influence.
Figure 3 also shows the (rescaled) cpu time profile, which
is a linear function ofdsr. It appears that first, the algo-
rithm exhibits a precision-cputime tradeoff (using thedsr
as tradeoff parameter parameterp), and second that, for
smalldsr’s, the precision of the measure increases faster
than its cpu time, which makes it a good candidate for the
NN algorithm presented in Section 2.

3.2 Formulation of the Problem

We apply the algorithm described in Section 2 to the task
of computing the 100 nearest neighbors of an arbitrary
seed song in a database containing 15,554 music files,
with respect to the target distanced. In our problem,d
is the timbre distance described above usingdsr = 2000,
which is considered to be an ideal setting.

The distance algorithm has a tradeoff parameterp =
dsr which takes its integer values inP = {1, ..., 2000},
and we refer to the instances of the distance which usesp
asdp. Notably,d = d2000. The cost of computingdp is
linear inp, and the precision ofdp increases withp.

This problem fits into the scheme presented in Section
2 if one states it as follows:

• S is the collection of music files

• dp is the Monte Carlo approximation of the KL dis-
tance withp sampling points

• s is an element ofS

• Np(s) is the set of the 100 nearest neighbors ofs
wrt dp. In particular, what we want to compute is
N2000(s), the set of the 100 nearest neighbors ofs
wrt d = d2000

Givens in S, ∀i ∈ {1, ..., 2000}, we define the result sets
Ni ⊆ S as follows:∀i ∈ {1, ..., 2000}, Ni is the smallest
subset ofS such that:

∀x ∈ N2000, ∀y ∈ S, di(x, s) ≥ di(y, s) ⇒ y ∈ Ni

(15)
In terms of information retrieval, if we define the set of
relevant documents asN2000(s), we can observe that

• |Ni| is the number of documents retrieved bydi when
recall6 = 1, i.e. when we have retrieved all the rele-
vant documents.

6Recall is the ratio of the number of relevant documents re-
trieved to the total number of relevant documents in the database.



• |Ni| is inversely related to the precision7 of the mea-
suredi at recall 1.

precision(di) =
|N2000(s)|

|Ni|
=

100

|Ni|
(16)

We can now defineci by:

ci(x) = true ⇔ x ∈ Ni(s) (17)

Let us demonstrate that propertiesP1, P2 andP3 hold
for theci thus defined:

• P1 is satisfied since the cost of computingdp is lin-
ear inp

• P2 andP3 are satisfied statistically, since the preci-
sion ofdp increases withp and by construction of the
Ni result sets.

Therefore, one can apply our approach to the problem of
computingN2000 for seed songs.

3.3 Practical Implementation

In order to find the optimal series of(ci)i that minimizes
the total cputime of our approach for a given query on
N2000(s), we need to estimate the|Ni| for a (large) set of
i ∈ {1, ..., 2000}. One way to estimate|Ni| is to actually
compute the setNi, i.e.

• applydi−1 onN0 = S in order to sort the songs inS
by distance tos according todi−1

• find the maximum rank over all songs inN2000. It
corresponds to the rank after which all the items of
N2000(s) have been retrieved, i.e.|Ni|

However, this direct approach as two major problems.

• The set of|Ni| depends on the seed song, so in the-
ory, we have to apply this procedure for each seed
song before being able to find the optimal sequence
of steps. This is unpractical, as estimating the|Ni(s)|
for a givens is itself longer than the direct calcula-
tion of N2000(s) with the standard approach. More-
over, it’s a chicken and egg problem, as computing
the |Ni(s)| requires to knowN2000(s).

• The P distancesdi are stochastic algorithms based
on Monte Carlo, which never return the same dis-
tancedi(s, t) between 2 given songss and t twice
(although the variance on the results obviously de-
creases asdsr increases). Hence, for a given seed
songs, the|Ni(s)|’s themselves should be averaged
over several runs of the above procedure.

To overcome these limitations, we propose to estimate a
unique set of̃|Ni| for the whole database, by applying the
above procedure to a few random songs in the database
and averaging the results. This has the drawback that the
successive inclusion property (PropertyP4) is only sta-
tistically verified for the estimated̃|Ni|, and we have no

7The precision is the ratio of the number of relevant docu-
ments retrieved to the total number of documents retrieved
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Figure 4: Convergence profile of theNi, averaged over 50
NN timbre queries.

insurance that, for a given seed songs, at a given step
i, the set of items̃Ni actually contains all the items in
N2000(s). It follows that the final set of items returned by
the algorithm after a given series of steps(ci)i is only an

estimate ˜N2000(s) of the actual setN2000(s), associated
with a precision

p((ci)i, s) =
| ˜N2000(s) ∩ N2000(s)|

|N2000(s)|
(18)

Figure 4 shows the estimated̃|Ni| for i = 1, ..., 2000,
computed on the test database by averaging theNi(s) over
ns = 50 random songs. The darkest curve corresponds to
the averagem = 1

ns

∑ns

k=1 |Ni(sk)|, the medium curve
corresponds to the summ + σ of the averagem and the
standard deviationσ of the|Ni(sk)|, and the lightest curve
to m + 2σ.

3.4 Results

We apply our algorithm to the task of calculating the 100
nearest neighbors of a given seed song according to the
timbre similarity described above. Table 1 shows the op-
timal sequence of steps(ci)i obtained with dynamic pro-
gramming (see Section 2.3), and the associated cost mea-
sured by

∑
i |Ni|t(ci). We compare the results using the

3 sets of estimated̃|Ni| in Figure 4 and an additional set
obtained by downsizing the|Ni| by 25%. For dynamic
programming, we make the assumption that the cputime
is linear t(ci) = α.i + β, with α = 1 andβ = 0. It
appears that the optimal sequences differ slightly whether
we consider thẽ|Ni| with or without standard deviation.
The optimal sequence yields an algorithm which is theo-
retically more than 30 times faster than the standard ap-
proach.

Table 2 shows the measured performance (cputime
and precision) of the actual implementation of the algo-
rithm for the same sequences of steps. Overall, the cpu
performance is very good (we achieve speed improvement
factors greater than 30) while still preserving near perfect
precision (we retrieve 98% of the 100 true nearest neigh-
bors). We observe that as the|Ni| increase, the precision
of the results increases (we are less subjected to accidently
pruning relevant nearest neighbors) but also the cpu time.
We may observe that the achieved cputime rates are lower



Table 1: Optimal sequences as predicted by dynamic programming

Strategy Steps (|Ni|,i) cost (% standard)
standard {15554, 2000} 31,080k (100%)
best (mean) {15554, 6}, {4501, 20}, {2710, 60}, {652, 200}, {290, 400}, {218, 2000} 1,028k (3.3%)
best (mean - 25%) {15554, 6}, {3375, 20}, {2032, 60}, {489, 200}, {217, 400}, {163, 2000} 793k (2.6%)
best (mean +σ) {15554, 6}, {4090, 60}, {894, 200}, {374, 400}, {264, 2000} 1,195k (3.9%)
best (mean + 2σ) {15554, 6}, {6819, 60}, {1136, 200}, {458, 400}, {310, 2000} 1,532k (4.9%)

than the theoretical predictions (about 1% absolute). This
can be explained by the following points :

• The optimal sequence found by dynamic program-
ming and its expected performance were computed
using a very simple cpu time modelt(ci) = i. This
doesn’t include e.g. the overhead cost of file I/O (re-
trieving the GMMs from the database, writing the re-
sults, etc.)

• The distance algorithm was not reimplemented to
support our recursive approach, i.e. the same exe-
cutable is run for the successive values ofdsr. While
this makes the algorithm generic (no need to re-
program the distance algorithm it uses), this has an
unnecessary cost: each step adds the overhead of its
own system call (the executable is called from Java),
initialization, file I/O (all the needed GMM files are
re-opened at each step, while|Ni+1| − |Ni| files
are common between each successive call), Gaussian
sampling (at each step,dsri points are sampled from
the Gaussians, while onlydsri+1 − dsri new points
are needed). Most of these overhead costs are not
accounted for in the theoretical predictions.

Table 2: Measured cputime and precision of several se-
quences of steps(ci)i

Series cpu-time (% stand.) precision
standard 663.75 (100%) 100%
best (mean) 27.07 (4.0%) 98.2%
best (mean - 25%) 20.98 (3.1%) 94.0%
best (mean +σ) 33.91 (5.1%) 98.9%
best (mean + 2σ) 39.19 (6.0%) 99.0%

3.5 Monte-Carlo Improvements

The previous results show that the speed of convergence
of the precision of the successive approximations with in-
creasingdsr is an important factor to ensure both an im-
portant speed improvement and a precise result set. We
present here several variants of the Monte Carlo sampling
meant to improve the convergence of the approximation.
Note that these variants don’t improve the overall preci-
sion of the distance algorithm, but rather enable faster cal-
culation using the algorithm described in this paper.

3.5.1 Semi-Deterministic Gaussian sampling

For very smalldsr (1-10), it may be appropriate to max-
imize the prototypicality of the drawn samples from a
GMM by not drawing them at random (i.e. first drawing
a Gaussian component according to the a priori distribu-
tion, and then drawing a point from the chosen Gaussian),
but rather by deterministically choosing the centers of
the Gaussian components. More precisely, we can use 3
strategies to sample from the GMMs.

1. successively pick the center of the largest Gaussian
components by decreasing importance (first the
largest component, then second largest, etc.)

2. pick the center of a randomly drawn Gaussian com-
ponent (according to the a priori distribution)

3. normal sampling : random Gaussian, random point
in the Gaussian.

The first strategy is more deterministic than the second,
which itself is more than the third, hence we can explore
the whole space of such variants using 2 cut points,cut1
andcut2. To sampledsr = n points from a Gaussian, ap-
ply the first strategy for the firstcut1 points, then switch
to the second strategy forcut2 − cut1 points, and fi-
nally use the third strategy for the remainingn − cut2
points. Figure 5 shows an exploration of the space de-
fined by (cut1, cut2), wherecut1 and cut2 take values
in {0, 1, 5, 10, 20, 50}. We estimate the precision con-
vergence by computinga =

∑2000
i=1 i.|Ni|, which corre-

sponds to the area of the light gray curve in Figure 2 in
the case wheret(ci) is linear. The smaller thea value, the
faster the convergence. We computea by averaging over
50 nearest neighbor queries on randomly drawn items in
the test database. Figure 5 shows that an hybrid sampling
strategy which consists in first drawing the center of the
largest Gaussian (cut1 = 1), then drawing the centers
of 9 randomly drawn Gaussians (cut2 = 10), and finish
sampling with the standard strategy, is more than twice
as effective than the standard strategy all through (which
corresponds to{cut1 = 0, cut2 = 0}.

3.5.2 Antithetic variant method

The antithetic variant method is a simple improvement
method of Monte Carlo’s convergence, which is indepen-
dent of the distribution type. It simply generates an extra
random numbery for every generated numberx by chang-
ing its signy = −x. This makes the empirical mean of the
sequence tend to 0 with a significant increase in conver-
gence. The samples are then shifted and scaled in match
the target distribution’s mean and variance.



Figure 5: Exploration of the sampling variants defined by
(cut1, cut2). The optimal is a hybrid sampling strategy
with cut1 = 1 andcut2 = 10.

Figure 6: Comparison of sampling strategies

Figure 6 shows the decreasing|Ni| in function ofdsr
for the normal sampling strategy (black curve), sampling
with antithetic variant method (gray curve) and a com-
bination of antithetic variant and the semi-deterministic
sampling (white curve). This shows that a significant con-
vergence increase can be achieved using these methods.

4 Conclusion

We described a non-intrusive algorithm to quickly com-
pute the N nearest neighbors according to arbitrary sim-
ilarity measures which present a tradeoff between preci-
sion and cputime. The algorithm uses successive approx-
imations of the measure to compute more and more ex-
pensive measures on smaller and smaller sets. We achieve
speed improvement factors as high as 30, while still pre-
serving more than 98% precision, which paves the way for
real-world sized music databases.
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