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ABSTRACT

There is an increasing need for automatically d@ag sounds
for MIR and interactive music applications. In thentext of
supervised classification, we describe an apprela@himproves
the performance of the general bag-of-frame schertleout
loosing its generality. This method is based ondbestruction
and exploitation of specific audio features, calthlytical, as
input to classifiers. These features are bettes, $ense we define
precisely than standard, general features, or ¢wan ad hoc
features designed by hand for specific problems.c@ostruct
these features, our method explores a very largeespf func-
tions, by composing basic operators in syntactiaarect ways.
These operators are taken from the Mathematical Aundio
Processing domains. Our method allows us to buidge num-
ber of these features, evaluate and select theamatitally for
arbitrary audio classification problems.

We present here a specific study concerning théysinaof
Pandeiro (Brazilian tambourine) sounds. Two problamescon-
sidered: the classification of entire sounds, fdRMpplications,
and the classification of attacks portions of tbersl only, for
interactive music applications. We evaluate prégisee gain
obtained by analytical features on these two problein com-
parison with standard approaches.

1. ACOUSTIC FEATURES

Most audio classification approaches use eitheradrtbese two
paradigms: a general scheme, calley-of-frames,or ad hoc
approaches.

The bag-of-frame approach ([2], also cited [41]hsiets in
considering the signal in a blind way, using aeysttic and gen-
eral scheme: the signal is sliced into consecufessibly over-
lapping frames (typically of 50ms), from which act@ of audio
features is computed. The features are supposegptesent char-
acteristic information of the signal for the prablat hand. These
vectors are then aggregated (hence the “bag”) eddd the rest
of the chain. First, a subset of available featisadentified, us-

ing some feature selection algorithm. Then theufeaset is used
to train a classifier, from a database of labeligthads (training
set). The classifier thus obtained is then usutdsted against
another database (test set) to assess its perfoeman

The use of the features as input to classifiergspiao roles: a
dimension reduction role, and a representation. loléeed, the
signal itself could in principle be used as inputctassifiers, but
its dimension (number of samples) is usually taghhwith respect
to the training set size, resulting in overfittingdditionally, the
time/amplitude representation of signals has loagnbacknowl-
edged to be poorly adapted to represent perceptfeemation:
audio features used in the classification litemtaim precisely at
capturing essential perceptive characteristicsudiasignals that
are not easily revealed in the temporal representaf source of
audio features is for instance MPEG7-audio ([15inare specifi-
cally [28] or [20]) for the music domain. Thesetfgas are usu-
ally of low dimensionality, and contain statisticaformation
from the temporal domain (e.g. Zero-crossing raspgctral do-
main (e.g. SpectralCentroid), or more perceptiveeetsp(such as
sharpness, relative loudness, etc.).

The bag-of-frame approach has been used extensivehe
MIR domain, for instance by [32]. A large proportiof MIR
related papers has been devoted to studying treldef this
chain of process: feature identification [28]; fe&t aggregation
[34]; feature selection [26],[22],[7]; classifieomparison or tun-
ing [1],[41].

An even larger proportion of ISMIR papers discuss appli-
cation of this approach to specific musical proldegenre classi-
fication [38],[21],[25],[39]; orchestral sound [27]percussion
instrument [37],[35],[13],[36]; tabla strokes [H][ audio finger-
printing [5]; noises [12] as well as identificatidasks, such as
vocal identification [18] or mood detection [19].

This approach achieves a reasonable degree of ssucre
some problems. For instance, speech music dis@atiom sys-
tems based on the bag-of-frame paradigm yield dlrpesfect
results. However, the approach shows limitationsrwapplied to
more “difficult” problems. Although classificatiodifficulty is
hard to define precisely, it can be noted that el involving
classes with a smaller degree of abstraction arallysnuch more

DAFX-1



Proc. of the 10th Int. Conference on Digital AudifeEts (DAFx-07), Bordeaux, France, September 12087

difficult to solve. For instance, genre classifioatworks well on
abstract, large categories (Jazz vs. Rock), butpedance de-
grades for more precise classes (e.g. Be-bop vsl-btzy).

In these cases, the natural tendency is usuallgadbo for ad
hoc approaches, which aim at extracting “manually” frahe
signal the characteristics most appropriate for pneblem at
hand, and exploit them accordingly. This can beedeither by
defining ad hoc features, integrated in the baffashe approach
(e.g. the 4-Hertz modulation energy used in someedpmusic
classifiers, [32], or by defining completely diféeit schemes for
classifying, e.g. the analysis-by-synthesis apgrogesigned for
drum sound classification [45], and further develdy [44] and
[31].

One of the possible reasons for the limitation ag-of-frame
approach is that the generic features used, sudcheaMpeg-7
feature set, do not always capture the relevartepéive charac-
teristics of the signals to be classified. Somesifeer algorithms,
such as kernel methods [33] including Support VieMachines
[4],[34] do try to transform the feature space witle aim of im-
proving inter-class separability. However, the @aging sophisti-
cation of feature selection or classifier algorithcannot compen-
sate for any lack of information in the initial faees set.

Although ad hoc approaches may indeed reach itireggzer-
formance, they are rarely reusable: ad hoc feaanesby defini-
tion, problem specific. Consequently the scientd@antribution
(and epistemological status) of reports of ad hpgr@aches is
highly debatable.

In this work we try to extend the range of applwas for
which the general bag-of-frame approach gives faatisry re-
sults, by proposing a mechanism that invents sipesif hoc fea-
tures, in an automatic way to improve the classiftm perform-
ance.

To find better features than the generic ones,camefind in-
spiration in the way human experts actually invadthoc fea-
tures. The papers quoted above use a number k$ titd tech-
nigues to this aim, combined with intuitions andsmal knowl-
edge. For instance, one can use some front-eneinsystnormal-
ize a signal, or pass it through some filter, aadd pr post-
processing to isolate the (hopefully) most sal@rdracteristics of
the signal.

We propose here to automate a process of featueation,
by an algorithm which explores quickly a very laggace of ad
hoc functions. The functions are built by compodingether - in
the sense of functional composition - elementargrajprs. We
call these functions analytical because they aserd®ed by an
explicit composition of functions, as opposed tbestforms of
signal reduction, such as arbitrary computer progra

This paper is structured as follows: In Section&imtroduce
the EDS system, designed to create automaticalty explore
large sets of analytical features. Section 3 isotkV to the de-
scription of several experiments to compare thdopmance of
analytical features against generic ones, on twmdalassifica-
tion problems for the Pandeiro (Brazilian percussimirument):
an easy one, for MIR applications, and a more diffione, for
interactive music applications.

2. CREATION OF ANALYTIC FEATURES: THE EDS
SYSTEM

EDS — Extractor Discovery System — is developethatSony
CSL laboratory in Paris [45] to study experimentdhig notion
of analytical feature for audio signal processippliations.

The EDS system is able to explore efficiently tipace of
analytical features for arbitrary supervised audiassification
problem. A problem is determined by a databaseudfoasam-
ples labelled (usually by hand) with a finite sétctasses. The
exploration of the space of analytical featurelsased on various
function creation methods from a set of basic dpesa consid-
ered as elementary. These two aspects are desdnilteé fol-
lowing sections.

2.1. Alibrary of elementary operators

The choice of elementary operators is of coursérarp. These
operators were selected so as to allow the creatidonctions
with a “reasonable” degree of abstraction, i.ereseent salient
perceptive characteristics of the sound with a kmaiber of
operators (about 10, see below), while allowingcteate new,
and possibly relevant functions. These operataseither basic
mathematical operations (e.g. absolute value, mean) or sig-
nal processing operators such as Fourier transfdiltess, Db,
and spectral operators likepectralCentroid spectralSkewness
This library also includes more specifically musicgerators
such asPitch or Ltas (Long Term Average Spectrum). For the
sake of reproducibility, we describe in this papsults obtained
with the 76 basic operators listed in Annex 1.

If we limit the size of analytical features we deedi.e. the
number of operators used in its expression), wdoexa finite
function space. To give a rough idea of its sike:feature space
of features composed of at most 5 operator confam4 S func-
tions. In practice, we explore functions of sizeratst 10, which
represents a space of 54@unctions. Here are some typical
examples of functions generated by EDS:

(A) Mean(Mfcc(Differentiation(x),5))
(B) Median(Rms(Split(Normalize(x),32)))

The first function (A) computes the average of 5hfast cep-
stral coefficients of the differentiation of theysal (represented
by x). The second one (B) computes the mean valleglian) of

the energyRm3 of successive framesit) of 32 samples long
in the normalized signal.

Feature creation is controlled by two mechanisms:

1 — Each basic operator is typed according to tysipal dimen-
sions of its arguments. Types avoid creating syititly mean-
ingless features. For instance, the Fft operatkestaas input
something of the “time/amplitude” type, and its muit type is
“frequency/amplitude”. EDS can therefore  generate
Fft(HpFilter(x)), but not, e.g.Fft(max(x))

2 — Heuristics allow the system to further avoidating unprom-
ising functions. E.g. a heuristics penalizes fumi with too
many repetitions, lik&ft(Fft((Fft(x)))).
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In practice, adding a new basic operator to theatip
amounts to define 1) corresponding typing rules 2nkeuristics
to control the use of this operator (see [24]).

2.2. Creating analytical features

The creation of analytical features by composiregmentary op-

erators is based on genetic programming search I8 main

steps of this search are the following:

1. Construction of an initial population of analytidahtures, by
random compositions of operators.

2. Evaluation: compute each feature on all the trajrsignals,
then use a classifier (see Section 2.3) to assgfsmance.

3. lteration of the process. The next population it iom the
best features found in the current population, toctv are
added new features obtained using various gematisforms
of the current features.

This genetic procedure explores parts of the itdiset of all
analytical functions composed of basic operatofse Tonver-
gence towards “meaningful” or “interesting” anadyti features is
not guaranteed as this heuristic-based approacheantrapped
into local minima.

The genetic transforms of step 3 are the following:

- Substitution:replacing one operators by another one with
compatible type. E.g.
(A)  Max(Mfcc(Differentiation(x),5) )

is a substitutionNlax replacesviean) of (A)
- Cloning: special case of substitution which consists in augpy
a feature but changing its parameters, e.g. :

(B) Median(Rms(Split(Normalize(x), 64)))
is a clone of (B).

- Mutation an extension of substitution to sub expressigns a

pearing in the definition of a feature, which d&ifs the typing
rules:

(A" Mean(Chroma(Normalize(x)) )
is a mutation of (A): sub expressiohroma (Normal-
ize(x)) replaces Mfcc (Differentiation (x),5).

- Crossover combining two features to create a new one while

satisfying the typing rules. For instance:
(C) Mean(Rms(Split(Normalize(x),32)) )

(C) Median(Rms(Split( Differentiation(x) )
are crossovers between (A) and (B).
- Addition adding an operator to the root of a feature:

(B")
Abs( Median(Rms(Split(Normalize(x),32))) )

is an addition of (B).

2.3. Evaluation of features

To evaluate features, we need a computable critevibich

measures the quality of a feature, i.e. its capdoitdistinguish
elements of different classes (labels). There aréous ways to
define such a criterion. The Fischer Discriminantidr8] is

often used because it is simple to compute andhielifor binary
problems (two classes). However it is notoriousty adapted to
multi-class problems, in particular for non conwlstributions of
data.

To improve feature evaluation, we chose to impldman
“wrapper approach” to feature selection: features evaluated
using a classifier built during the feature seaiidie fitness is the
performance of a classifier built with this unidfeature (or more
precisely its F-measure [30]) trained on the tragndatabase.
This measure yields better performance than thehErscriteria
on multi-class problems.

3. PANDEIRO SOUND CLASSIFICATION

The Pandeiro is a Brazilian frame drum (a type afltaurine)

used in particular in Brazilian popular music (samb@co, ca-
poeira, chéro). As it is the case for many poputasic instru-
ments, there is no official method for playing ®@ndeiro. How-
ever, the third author, a professional Pandeirggulahas devel-
oped such a method, as well as a notation of theé?®, that we
use in this paper. This method is based on a fitzg&n of

Pandeiro sounds in exactly six categories (seer&igju

Tung: Bass sound, also known as open sound;
Ting: Higher pitched bass sound, also open;
PA (big pa): A slap sound, close to the Conga slap;

pa (small pa} A medium sound produced by hitting the Pandeiro
ahead in the center. Also considered as a slagsditer;

Tchi: The jingle sound;

Tr: A tremolo of jingle sounds.

The need for automatically analyzing Pandeiro seusdwo-
fold. First, MIR applications, for education notabhequire the
ability to automatically transcribe Pandeiro solos.

=

tung

Figurel. The gestures to produce the six basic Pandeiro
sounds.
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The second need is more original, and consistevweldping
real time interaction systems that expand the pdiigs of the
percussionist, to allow him to increase its musfpawers”. In
this case, we need to analyze robustly and qui€ldyndeiro
sounds, to trigger various events (see, e.g.[17]).

We therefore define two different analysis problermre-
sponding to these two applications.

The first problem consists in classifying comple@unds
(150ms duration) in the 6 classes. The second @mbmuch
more difficult but more useful for real time applions, consists
in classifying sounds using the least possibleriédion, typi-
cally only the attack (about 3ms, that is 128 sanpit 44 kHz),
so as to allow a subsequent triggering of a musieaht. To this
aim we must build a reliable and very fast classifi

3.1. Available sound databases

We have recorded a 2448 complete Pandeiro souf8sofdeach
6 types). They were produced with the same instntiraad re-
corded on a Shure Beta 98 microphone linked to a M®fav-
eller sound card.

In order to classify the sounds, it is importanfibely locate
them in time. To this aim, we designed a robustcitidentifier,
which works as follows, on the sounds of the twtabases.

We first extract an auditory spectrogram for theoiming
signal [14]. Because of real-time constraints, wiy compute an
approximation of this spectrogram, as follows. Tiheoming
signal is divided in non-overlapping frames of 1s4{®4 samples
at 44kHz). A loudness value is computed for eaaimé, generat-
ing the “loudness curve”. We compute the differatibin of this
curve. We call these two curves, tloedness and thedifferen-
tial. Both are low pass filtered to reduce noise.

The attack detection is then performed in two phabést
we determine a threshold value for distinguishiotual sounds
from noise. To this aim, the player captures 5 sds®f ambient
noise (typically room noise as well as soft Paralé&hi sounds)
and calculate the above mentioned curves fromathdso infor-
mation. The maximum value of these curves defireltbudness
and differential thresholds.

In the second phase, an attack is reported if, aéréain
frame, the loudness level is greater than the lesslinhreshold
and the norm of the differential curve exceeds difterential
threshold. This frame is considered as the “atfesnke”.

N N J/’\

N e

aftack

Figure 2. The attack detector: on the left, the full sound
and attack portion. On the right, a zoom of the-atiack
and post-attack portions of the signal.

When an attack is reported, two audio files arended. The
first file is the audio contained both in the aktdrame and its
preceding frame. This file populates the pre-attdatabase (see
Figure 2). We record another audio file with the audio atne

right after the attack (the attack frame and oner af). This file
populates the post-attack database.

Classifying the sound using only the pre-attack lokge in-
formation is the most difficult and useful problémour context.
The results on the post-attack database are slipltter, as it
will be discussed, but they require an extra defay.4ms (to get
the next 64 samples) before processing.

3.2. Experiments: training and testing bases

In order to assess the efficiency of analyticatueszs, we com-
pare them to results obtained with a “referencdufeaset”,

whose complete list is given in Annex 2. This refare set in-
cludes general features commonly used in audicabkigassifica-

tion tasks, and well defined mathematically. That Includes
notably the Mpeg-7 audio list, as well as sevethtrs, such as
Chroma often used for music analysis [10].

We systematically evaluate the performance of thassifiers:

one built with the reference set, the other buithwhe features
found by EDS with the set of basic operators in é&nf.

Each experiment is in turn divided in two partgsEiclassi-
fiers are trained on training samples and testethertest sam-
ples. To this aim, databases are systematicallidetivin two
parts, 2/3 for the training, and 1/3 for the t83te samples are
chosen randomly, to avoid artifacts (e.g. evolutidrthe mem-
brane during the recording session, small variationthe player
gestures).

In the second part, classifiers are trained antkdesnly on
the test database, using 10-fold cross-validation.

This double experiment aims at showing that theaathges
obtained by analytical features are consistent,dmdot depend
on the conditions of experiments. The cross-vabdatising only
the test database is motivated by the fact the &@&dy uses the
training database for evaluating the analyticaluiess. So reusing
it for training the classifiers could produce bmgalthough we
are not sure why and how).

Finally, for the attack problem, we build an expent in
which the signal itself is used as a feature (thipossible be-
cause these signals are very short). The aimdsnéirm that the
signal is not a good feature.

3.3. Choosing the classifiers

There is a vast literature on supervised learniggrahms [41]
West, K., Cox, S.Features and Classifiers for the automatic
classification of musical audio signal§SMIR 2004.

[42] West, K., Cox, S.Features and Classifiers for the
automatic classification of musical audio signals,
ISMIR 2004.
[43] with no clear winner in general. To demongrtte advan-
tages of analytical features, we have conducteéraxpnts with
various classifiers, to avoid biases (e.g. S\KMN, J48). For the
sake of clarity, we report here only the resultdwvBupport Vec-
tor Machines [34], which turned out to be the kmesi most sta-
ble algorithms tried. (We use the implementatioovjated in
Weka [40] with the polynomial kernel.)
We used EDS in a fully automated way for the cosafind
selection of analytical features. For each problem, ran the
genetic search until no improvements were founfkature fit-
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ness. For the complete sound problem, EDS evaluabeadit
40,000 features. For the attack problem EDS ewveduabout
200,000 features.

3.4. Feature Selection

To compare the two approaches (general versus tealjea-

tures) in a fair manner, it is important to trailassifiers on
spaces with identical dimension. For the full saradl reference
features (cf. Annex 2) could be computed, yieldinfpature set
of dimension 100. We have therefore selected 18@sanalyti-

cal features among the 23,200 computed by EDS.

In the case of attacks, not all reference featwae comput-
able, because there is insufficient data: onlyef@rence features
could be computed and evaluated, with a total dgieenof the
feature set of 90. We therefore selected 90 awcalyfeatures
among the 77,500 (resp. 53,500) EDS created ferafiacks
(resp. post-attacks).

To illustrate the results obtained, we have trigd tifferent
feature selection methods. Feature selection isitapt to avoid
using redundant features. Here again, there are fleature se-
lection methods [11] and the choice of the methwdd out to be
important for the final evaluation of the clasgifi&#o avoid bias,
we use, here also, two methods. The first is thie BEyorithm
(Information Gain Ratio) [29]. Technically, this cesponds to
the WekaAttributeSelectionalgorithm with the following pa-
rameters: thevaluatoris alnfoGainAttributeEvalnd thesearch

is aRanker which allows us to determine a priori the dimensi
of the feature set.

Secondly, we also developed a feature selectioarigign
more suited to the application of EDS to multi-slagoblems.
The idea is to select a feature set that “covepgtinmlly the
classes to learn, from the viewpoint of individtedtures, that is,
essentially of their F-measure (see Section 2.Bjs @lgorithm
iterates over all classes and selects succesdaaiyres with the
best F-measure for a given class.

Finally, we present results obtained for variouesiof fea-
ture sets (from 1 to 100). This is an importanteaspn the con-
text of real-time systems, where we want to minerttze number
of features to compute in real time. As we will,.SEBS finds not
only better features but also feature sets of tedisgension.

3.5. Results and comments

The tables Figure 3, Figure 4 and Figure 5 showdsalts ob-
tained:

For the two problems, analytical features foundB@S im-
prove the classification performance. The full sbymoblem is
relatively easy. The use of the full reference deatset (dimen-
sion 100) yields a precision of about 99,9%. Whk same di-
mension, analytical features yields the same poetiShe gain
becomes interesting if we consider feature sewsadller dimen-
sion: 2 analytical features yield a precision of589 versus 78%
for general features.

Feature Set Dimension

Experiment Description 100 90 75 50 25 15 10 5 3 2 1
Reference IGR Train/Test 99,9 999 99,6 995 99 995 99,192,8 885 65p 56
Reference IGR 10-fold XV 99,9 99,84 995 995 99|1 98,6 98,4 92 82 60,5 598

EDS IGR Train/Test 99,9 99,9 985 983 98/9 983 991 98 68,9 36, 369
EDS IGR 10-fold XV 99,9 99,9 99,9 98,8 98 98,4 98,297,8 64,7 3p 21)2
Reference| EDS FS Train/Test 99,9 99,9 999 99,8 99|1 99,1 98,998,8 93,6 80 67|2
Reference| EDS FS 10-fold XV 99,9 99,6 996 994 986 984 98,898,3 934 78p 61|6
EDS EDS FS Train/Test 99,9 99,9 989 999 99|9 996 995 99 89,9 88B 738
EDS EDS FS 10-fold XV 99,9 99,9 98,9 99,7 996 995 994 99 91,3 89p 736

Figure3. Results on full soundsGR stands for Information Gain Rati@&DS FS denotes our fea-
ture selection algorithm based on the F-measiirain/Test denotes the experiment in which the
classifier is trained on the training database aedted on the test databad€-fold XV denotes
the 10-fold cross validation experiment on the tiegbase.
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Feature Set Dimension

Experiment Description 90 75 50 25 15 10 5 3 2 1
Reference IGR Train/Test 94,8 956 93 76,8 76 76,L 735 65954,4 44,6
Reference IGR 10-fold XV 94,8 94,8 92,1 78,8 732 722 66[2 65,248,3 43,3

EDS IGR Train/Test 94,8 956 924 81 76,6 76 696 65,7 54,4 445
EDS IGR 10-fold XV 95,1 945 924 788 732 735 66,8 65,3509 45
Reference | EDS FS | Train/Test 94,7 94,Y 94,4 92,4 90,8 887 87|12 84,1714 524
Reference | EDS FS | 10-fold XV 954 947 94 919 90,8 87,9 857 815684 51,3
EDS EDS FS | Train/Test 9 955 951 939 935 934 93 89,986,7 71,1
EDS EDS FS | 10-fold XV 95,1 9% 9574 93,3 92,9 9255 92|5 88,384, 71,4
Signal 75.8 758 729 67.6 67.1 46 44 36|16 37 35.9

Figure 4. Results obtained with on pre-attacks.

See abovalfbreviations. The “Signal” line

gives the performance of classifiers using the irgignal directly as a feature.

Feature Set Dimension

Experiment Description 90 75

50 25 15 10 5 3 2 1

Reference IGR Train/Test | 91,8 91,8 896 76/6 783 67,5 64,3 56,1 51,1 49
Reference IGR 10-fold XV | 92,6 91,2 88,8 799 732 674 647 442 424 P45
EDS IGR Train/Test | 95,1 93,8 923 77|7 735 63 61,3 54,7 %45 bp6,9
EDS IGR 10-fold XV | 94,9 93,8 924 80,8 789 624 61 55,1 55,9 p4,9
Reference | EDS FS | Train/Test [ 91,9 91,5 9L 87)7 86,7 834 836 717 556 #39
Reference | EDS FS | 10-fold XV [ 91,9 91,5 90,2 861 852 78,9 82 68,5 48,6 39
EDS EDSFS | Train/Test | 94,9 94,4 94 92/]1 914 879 90,1 886 804 V|21
EDS EDS FS | 10-fold XV | 94,5 94 93B 9114 914 89 89,5 88 4g0,1 9,2
Signal 774 76.9 733 64{1 64.2 bO 5.2 H58.1 57.5 44
Figure5. Results obtained with on post-attacks. See abovebtoreviations.
The attack problems are more difficult and inténgstAna-
Iytical features are still better than general griesparticular v
for small feature sets. For the post-attack problgranalytical 00| T —— ~—_
features perform as well as the 50 best generalresa zz e X N~—

We can note that the gain evolution depends orfieduere
selection algorithm used. The standard IGR algoritto®s not
select the best EDS features for small size feasets (this
result is already known, see [3]). However, ourtifea selec-
tion algorithm yields better results for all sizethe feature
set, as illustrated in Figure 6. This result shoagmin, if
needed, the difficulty in interpreting the precisiof classifiers
directly.

The performance gain brought by analytical featues
small feature sets has a lot of advantages, incpéat for real-
time applications. For the attack problem, 3 fesguyield a
precision greater than that obtained with 50 refezefeatures.
These features are the following

Abs(Log (Percentile(Square(BpFilter (x, 764, 3087)), 64)))

Centroid (MelBands(Differentiation (HpFilter (Power(Normalize(x),
3), 100)), 6))

Abs(Sum(Arcsin (Mfcc (Hann (HpFilter (x, 19845)), 20))))

& T \
.
70

65
60 .

55 .
50

90 75 50 25 15 10 5 3 2 1

‘ ..... Ref Se—— ‘

Figure6. Analytical vs. reference features on attacks

This particular result allows us to consider réalet im-
plementations: on a 3GHz Pentium IV PC, the contmirteof
the 3 features for a 2,8 ms signal takes about,3anse com-
pared to the computation of 50 generic featuredctwkakes
12 ms, that is 4 times slower.

4. CONCLUSION

We have presented a method for creating audiorfegtaalled
analytical, by composing basic signal operatorsiorove the
performance of classification algorithms. We halesirated
this idea on audio classification problems dealingth

Pandeiro sounds. In all cases (classifying fullngts) or only
portions of the attacks) analytical features dorowup the per-
formance of classification, as compared to resabtained with
generic, Mpeg-7 like features, in a bag-of-framprapch. The
gain is notable both in terms of classification gs®n and
feature set size. Moreover, analytical featuresrawg classifi-

DAFX-6



Proc. of the 10th Int. Conference on Digital AudifeEts (DAFx-07), Bordeaux, France, September 12087

cation algorithms independently of any other opation
process (such as boosting, baggingahocapproaches).
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7. ANNEXES

All the sounds and results of this study are madsl-a
able to interested readers, as well as feature (iléeka
format): http://SecondAuthorWebSite/pandeiro

7.1. Annex 1 — Basic EDS operators

The list of basic operators used by EDS in thiglptis the
following:
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