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ABSTRACT 

There is an increasing need for automatically classifying sounds 
for MIR and interactive music applications. In the context of 
supervised classification, we describe an approach that improves 
the performance of the general bag-of-frame scheme without 
loosing its generality. This method is based on the construction 
and exploitation of specific audio features, called analytical, as 
input to classifiers. These features are better, in a sense we define 
precisely than standard, general features, or even than ad hoc 
features designed by hand for specific problems. To construct 
these features, our method explores a very large space of func-
tions, by composing basic operators in syntactically correct ways. 
These operators are taken from the Mathematical and Audio 
Processing domains. Our method allows us to build a large num-
ber of these features, evaluate and select them automatically for 
arbitrary audio classification problems. 

We present here a specific study concerning the analysis of 
Pandeiro (Brazilian tambourine) sounds. Two problems are con-
sidered: the classification of entire sounds, for MIR applications, 
and the classification of attacks portions of the sound only, for 
interactive music applications. We evaluate precisely the gain 
obtained by analytical features on these two problems, in com-
parison with standard approaches. 

1. ACOUSTIC FEATURES  

Most audio classification approaches use either one of these two 
paradigms: a general scheme, called bag-of-frames, or ad hoc 
approaches. 

The bag-of-frame approach ([2], also cited [41]) consists in 
considering the signal in a blind way, using a systematic and gen-
eral scheme: the signal is sliced into consecutive, possibly over-
lapping frames (typically of 50ms), from which a vector of audio 
features is computed. The features are supposed to represent char-
acteristic information of the signal for the problem at hand.  These 
vectors are then aggregated (hence the “bag”) and fed to the rest 
of the chain. First, a subset of available features is identified, us-

ing some feature selection algorithm. Then the feature set is used 
to train a classifier, from a database of labeled signals (training 
set). The classifier thus obtained is then usually tested against 
another database (test set) to assess its performance. 

The use of the features as input to classifiers plays two roles: a 
dimension reduction role, and a representation role. Indeed, the 
signal itself could in principle be used as input to classifiers, but 
its dimension (number of samples) is usually too high with respect 
to the training set size, resulting in overfitting. Additionally, the 
time/amplitude representation of signals has long been acknowl-
edged to be poorly adapted to represent perceptive information: 
audio features used in the classification literature aim precisely at 
capturing essential perceptive characteristics of audio signals that 
are not easily revealed in the temporal representation. A source of 
audio features is for instance MPEG7-audio ([15] or more specifi-
cally [28] or [20]) for the music domain. These features are usu-
ally of low dimensionality, and contain statistical information 
from the temporal domain (e.g. Zero-crossing rate), spectral do-
main (e.g. SpectralCentroid), or more perceptive aspects (such as 
sharpness, relative loudness, etc.). 

The bag-of-frame approach has been used extensively in the 
MIR domain, for instance by [32]. A large proportion of MIR 
related papers has been devoted to studying the details of this 
chain of process: feature identification [28]; feature aggregation 
[34]; feature selection [26],[22],[7]; classifier comparison or tun-
ing [1],[41].  

An even larger proportion of ISMIR papers discuss the appli-
cation of this approach to specific musical problems: genre classi-
fication [38],[21],[25],[39]; orchestral sound [27]; percussion 
instrument [37],[35],[13],[36]; tabla strokes [9],[6]; audio finger-
printing [5]; noises [12] as well as identification tasks, such as 
vocal identification [18] or mood detection [19]. 

This approach achieves a reasonable degree of success on 
some problems. For instance, speech music discrimination sys-
tems based on the bag-of-frame paradigm yield almost perfect 
results. However, the approach shows limitations when applied to 
more “difficult” problems. Although classification difficulty is 
hard to define precisely, it can be noted that problems involving 
classes with a smaller degree of abstraction are usually much more 
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difficult to solve. For instance, genre classification works well on 
abstract, large categories (Jazz vs. Rock), but performance de-
grades for more precise classes (e.g. Be-bop vs. Hard-bop).  

In these cases, the natural tendency is usually to look for ad 
hoc approaches, which aim at extracting “manually” from the 
signal the characteristics most appropriate for the problem at 
hand, and exploit them accordingly. This can be done either by 
defining ad hoc features, integrated in the bag-of-frame approach 
(e.g. the 4-Hertz modulation energy used in some speech/music 
classifiers, [32], or by defining completely different schemes for 
classifying, e.g. the analysis-by-synthesis approach designed for 
drum sound classification [45], and further developed by [44] and 
[31]. 

One of the possible reasons for the limitation of bag-of-frame 
approach is that the generic features used, such as the Mpeg-7 
feature set, do not always capture the relevant perceptive charac-
teristics of the signals to be classified. Some classifier algorithms, 
such as kernel methods [33] including Support Vector Machines 
[4],[34] do try to transform the feature space with the aim of im-
proving inter-class separability. However, the increasing sophisti-
cation of feature selection or classifier algorithms cannot compen-
sate for any lack of information in the initial features set. 

Although ad hoc approaches may indeed reach interesting per-
formance, they are rarely reusable: ad hoc features are, by defini-
tion, problem specific. Consequently the scientific contribution 
(and epistemological status) of reports of ad hoc approaches is 
highly debatable. 

In this work we try to extend the range of applications for 
which the general bag-of-frame approach gives satisfactory re-
sults, by proposing a mechanism that invents specific ad hoc fea-
tures, in an automatic way to improve the classification perform-
ance. 

To find better features than the generic ones, one can find in-
spiration in the way human experts actually invent ad hoc fea-
tures. The papers quoted above use a number of tricks and tech-
niques to this aim, combined with intuitions and musical knowl-
edge. For instance, one can use some front-end system to normal-
ize a signal, or pass it through some filter, add pre or post-
processing to isolate the (hopefully) most salient characteristics of 
the signal. 

We propose here to automate a process of feature invention, 
by an algorithm which explores quickly a very large space of ad 
hoc functions. The functions are built by composing together - in 
the sense of functional composition - elementary operators. We 
call these functions analytical because they are described by an 
explicit composition of functions, as opposed to other forms of 
signal reduction, such as arbitrary computer programs. 

This paper is structured as follows: In Section 2 we introduce 
the EDS system, designed to create automatically and explore 
large sets of analytical features. Section 3 is devoted to the de-
scription of several experiments to compare the performance of 
analytical features against generic ones, on two sound classifica-
tion problems for the Pandeiro (Brazilian percussion instrument): 
an easy one, for MIR applications, and a more difficult one, for 
interactive music applications. 

2. CREATION OF ANALYTIC FEATURES: THE EDS 
SYSTEM 

EDS – Extractor Discovery System – is developed at the Sony 
CSL laboratory in Paris [45] to study experimentally the notion 
of analytical feature for audio signal processing applications. 

The EDS system is able to explore efficiently the space of 
analytical features for arbitrary supervised audio classification 
problem. A problem is determined by a database of audio sam-
ples labelled (usually by hand) with a finite set of classes. The 
exploration of the space of analytical features is based on various 
function creation methods from a set of basic operators, consid-
ered as elementary. These two aspects are described in the fol-
lowing sections. 

2.1. A library of elementary operators 

The choice of elementary operators is of course arbitrary. These 
operators were selected so as to allow the creation of functions 
with a “reasonable” degree of abstraction, i.e. represent salient 
perceptive characteristics of the sound with a small number of 
operators (about 10, see below), while allowing to create new, 
and possibly relevant functions. These operators are either basic 
mathematical operations (e.g. absolute value, max, mean) or sig-
nal processing operators such as Fourier transforms, filters, Db, 
and spectral operators like spectralCentroid, spectralSkewness. 
This library also includes more specifically musical operators 
such as Pitch or Ltas (Long Term Average Spectrum). For the 
sake of reproducibility, we describe in this paper results obtained 
with the 76 basic operators listed in Annex 1. 

If we limit the size of analytical features we create (i.e. the 
number of operators used in its expression), we explore a finite 
function space. To give a rough idea of its size: the feature space 
of features composed of at most 5 operator contains 2,5.109 func-
tions. In practice, we explore functions of size at most 10, which 
represents a space of 5.1020 functions. Here are some typical 
examples of functions generated by EDS: 

(A) Mean(Mfcc(Differentiation(x),5))  

(B) Median(Rms(Split(Normalize(x),32))) 

The first function (A) computes the average of the 5 first cep-
stral coefficients of the differentiation of the signal (represented 
by x). The second one (B) computes the mean value (Median) of 
the energy (Rms) of successive frames (split) of 32 samples long 
in the normalized signal. 

Feature creation is controlled by two mechanisms: 

1 – Each basic operator is typed according to the physical dimen-
sions of its arguments. Types avoid creating syntactically mean-
ingless features. For instance, the Fft operator takes as input 
something of the “time/amplitude” type, and its output type is 
“frequency/amplitude”. EDS can therefore generate 
Fft(HpFilter(x)), but not, e.g., Fft(max(x)). 

2 – Heuristics allow the system to further avoid creating unprom-
ising functions. E.g. a heuristics penalizes functions with too 
many repetitions, like Fft(Fft((Fft(x)))). 
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In practice, adding a new basic operator to the library 
amounts to define 1) corresponding typing rules and 2) heuristics 
to control the use of this operator (see [24]). 

2.2. Creating analytical features 

The creation of analytical features by composing elementary op-
erators is based on genetic programming search [16]. The main 
steps of this search are the following: 
1. Construction of an initial population of analytical features, by 

random compositions of operators. 
2. Evaluation: compute each feature on all the training signals, 

then use a classifier (see Section 2.3) to assess performance. 
3. Iteration of the process. The next population is built from the 

best features found in the current population, to which are 
added new features obtained using various genetic transforms 
of the current features. 

This genetic procedure explores parts of the infinite set of all 
analytical functions composed of basic operators. The conver-
gence towards “meaningful” or “interesting” analytical features is 
not guaranteed as this heuristic-based approach can be entrapped 
into local minima. 

The genetic transforms of step 3 are the following: 

- Substitution: replacing one operators by another one with a 
compatible type. E.g. 

(A’) Max( Mfcc(Differentiation(x),5) )  
is a substitution (Max replaces Mean) of (A) 

- Cloning: special case of substitution which consists in copying 
a feature but changing its parameters, e.g. : 

(B’) Median(Rms(Split(Normalize(x), 64)))  
is a clone of (B). 

- Mutation: an extension of substitution to sub expressions ap-
pearing in the definition of a feature, which satisfies the typing 
rules: 

(A”) Mean( Chroma(Normalize(x)) )  
is a mutation of (A): sub expression Chroma (Normal-
ize(x))  replaces Mfcc (Differentiation (x),5).  

- Crossover: combining two features to create a new one while 
satisfying the typing rules. For instance:  

(C) Mean( Rms(Split(Normalize(x),32)) )  
(C’) Median(Rms(Split( Differentiation(x) ))  

are crossovers between (A) and (B). 

- Addition: adding an operator to the root of a feature: 
(B”) 

Abs( Median(Rms(Split(Normalize(x),32))) )  
is an addition of (B). 

2.3. Evaluation of features 

To evaluate features, we need a computable criterion which 
measures the quality of a feature, i.e. its capacity to distinguish 
elements of different classes (labels). There are various ways to 
define such a criterion. The Fischer Discriminant Ratio [8] is 
often used because it is simple to compute and reliable for binary 
problems (two classes). However it is notoriously not adapted to 
multi-class problems, in particular for non convex distributions of 
data. 

To improve feature evaluation, we chose to implement a 
“wrapper approach” to feature selection: features are evaluated 
using a classifier built during the feature search. The fitness is the 
performance of a classifier built with this unique feature (or more 
precisely its F-measure [30]) trained on the training database. 
This measure yields better performance than the Fischer criteria 
on multi-class problems. 

3. PANDEIRO SOUND CLASSIFICATION 

The Pandeiro is a Brazilian frame drum (a type of tambourine) 
used in particular in Brazilian popular music (samba, côco, ca-
poeira, chôro). As it is the case for many popular music instru-
ments, there is no official method for playing the Pandeiro. How-
ever, the third author, a professional Pandeiro player, has devel-
oped such a method, as well as a notation of the Pandeiro, that we 
use in this paper. This method is based on a classification of 
Pandeiro sounds in exactly six categories (see Figure 1): 

Tung: Bass sound, also known as open sound; 

Ting: Higher pitched bass sound, also open; 

PA (big pa): A slap sound, close to the Conga slap; 

pa (small pa): A medium sound produced by hitting the Pandeiro 
head in the center. Also considered as a slap, but softer; 

Tchi: The jingle sound; 

Tr : A tremolo of jingle sounds. 

The need for automatically analyzing Pandeiro sounds is two-
fold. First, MIR applications, for education notably, require the 
ability to automatically transcribe Pandeiro solos. 

 . 
tung   ting 

  
tchi   tr 

  
PA   pa 

Figure 1. The gestures to produce the six basic Pandeiro 
sounds. 
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The second need is more original, and consists in developing 
real time interaction systems that expand the possibilities of the 
percussionist, to allow him to increase its musical “powers”. In 
this case, we need to analyze robustly and quickly Pandeiro 
sounds, to trigger various events (see, e.g.[17]). 

We therefore define two different analysis problems, corre-
sponding to these two applications. 

The first problem consists in classifying complete sounds 
(150ms duration) in the 6 classes. The second problem, much 
more difficult but more useful for real time applications, consists 
in classifying sounds using the least possible information, typi-
cally only the attack (about 3ms, that is 128 samples at 44 kHz), 
so as to allow a subsequent triggering of a musical event. To this 
aim we must build a reliable and very fast classifier.  

3.1. Available sound databases 

We have recorded a 2448 complete Pandeiro sounds (408 of each 
6 types). They were produced with the same instrument and re-
corded on a Shure Beta 98 microphone linked to a MOTU Trav-
eller sound card.  

In order to classify the sounds, it is important to finely locate 
them in time. To this aim, we designed a robust attack identifier, 
which works as follows, on the sounds of the two databases. 

We first extract an auditory spectrogram for the incoming 
signal [14]. Because of real-time constraints, we only compute an 
approximation of this spectrogram, as follows. The incoming 
signal is divided in non-overlapping frames of 1.4ms (64 samples 
at 44kHz). A loudness value is computed for each frame, generat-
ing the “loudness curve”. We compute the differentiation of this 
curve. We call these two curves, the loudness” and the differen-
tial. Both are low pass filtered to reduce noise. 

The attack detection is then performed in two phases. First 
we determine a threshold value for distinguishing actual sounds 
from noise. To this aim, the player captures 5 seconds of ambient 
noise (typically room noise as well as soft Pandeiro tchi sounds) 
and calculate the above mentioned curves from this audio infor-
mation. The maximum value of these curves define the loudness 
and differential thresholds. 

In the second phase, an attack is reported if, at a certain 
frame, the loudness level is greater than the loudness threshold 
and the norm of the differential curve exceeds the differential 
threshold. This frame is considered as the “attack frame”.  

          

Figure 2. The attack detector: on the left, the full sound 
and attack portion. On the right, a zoom of the pre-attack 
and post-attack portions of the signal. 

When an attack is reported, two audio files are recorded. The 
first file is the audio contained both in the attack frame and its 
preceding frame. This file populates the pre-attack database (see 
Figure 2). We record another audio file with the audio stream 

right after the attack (the attack frame and one after it). This file 
populates the post-attack database. 

Classifying the sound using only the pre-attack database in-
formation is the most difficult and useful problem in our context. 
The results on the post-attack database are slightly better, as it 
will be discussed, but they require an extra delay of 1.4ms (to get 
the next 64 samples) before processing. 

3.2. Experiments: training and testing bases 

In order to assess the efficiency of analytical features, we com-
pare them to results obtained with a “reference feature set”, 
whose complete list is given in Annex 2. This reference set in-
cludes general features commonly used in audio signal classifica-
tion tasks, and well defined mathematically. The list includes 
notably the Mpeg-7 audio list, as well as several others, such as 
Chroma, often used for music analysis [10]. 
We systematically evaluate the performance of two classifiers: 
one built with the reference set, the other built with the features 
found by EDS with the set of basic operators in Annex 1. 

Each experiment is in turn divided in two parts. First, classi-
fiers are trained on training samples and tested on the test sam-
ples. To this aim, databases are systematically divided in two 
parts, 2/3 for the training, and 1/3 for the test. The samples are 
chosen randomly, to avoid artifacts (e.g. evolution of the mem-
brane during the recording session, small variations in the player 
gestures). 

In the second part, classifiers are trained and tested only on 
the test database, using 10-fold cross-validation. 

This double experiment aims at showing that the advantages 
obtained by analytical features are consistent, and do not depend 
on the conditions of experiments. The cross-validation using only 
the test database is motivated by the fact the EDS already uses the 
training database for evaluating the analytical features. So reusing 
it for training the classifiers could produce biases (although we 
are not sure why and how). 

Finally, for the attack problem, we build an experiment in 
which the signal itself is used as a feature (this is possible be-
cause these signals are very short). The aim is to confirm that the 
signal is not a good feature. 

3.3. Choosing the classifiers 

There is a vast literature on supervised learning algorithms [41] 
West, K., Cox, S., Features and Classifiers for the automatic 
classification of musical audio signals, ISMIR 2004. 

[42] West, K., Cox, S., Features and Classifiers for the 
automatic classification of musical audio signals, 
ISMIR 2004. 

[43] with no clear winner in general. To demonstrate the advan-
tages of analytical features, we have conducted experiments with 
various classifiers, to avoid biases (e.g. SVM, kNN, J48). For the 
sake of clarity, we report here only the results with Support Vec-
tor Machines [34], which turned out to be the best and most sta-
ble algorithms tried. (We use the implementation provided in 
Weka [40] with the polynomial kernel.) 

We used EDS in a fully automated way for the creation and 
selection of analytical features. For each problem, we ran the 
genetic search until no improvements were found in feature fit-
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ness. For the complete sound problem, EDS evaluated about 
40,000 features. For the attack problem EDS evaluated about 
200,000 features. 

3.4. Feature Selection 

To compare the two approaches (general versus analytical fea-
tures) in a fair manner, it is important to train classifiers on 
spaces with identical dimension. For the full sounds, all reference 
features (cf. Annex 2) could be computed, yielding a feature set 
of dimension 100. We have therefore selected 100 scalar analyti-
cal features among the 23,200 computed by EDS. 

In the case of attacks, not all reference features were comput-
able, because there is insufficient data: only 17 reference features 
could be computed and evaluated, with a total dimension of the 
feature set of 90. We therefore selected 90 analytical features 
among the 77,500  (resp. 53,500) EDS created for pre-attacks 
(resp. post-attacks). 

To illustrate the results obtained, we have tried two different 
feature selection methods. Feature selection is important to avoid 
using redundant features. Here again, there are many feature se-
lection methods [11] and the choice of the method turns out to be 
important for the final evaluation of the classifier. To avoid bias, 
we use, here also, two methods. The first is the IGR algorithm 
(Information Gain Ratio) [29]. Technically, this corresponds to 
the Weka AttributeSelection algorithm with the following pa-
rameters: the evaluator is a InfoGainAttributeEval and the search 

is a Ranker, which allows us to determine a priori the dimension 
of the feature set.  

Secondly, we also developed a feature selection algorithm 
more suited to the application of EDS to multi-class problems. 
The idea is to select a feature set that “covers” optimally the 
classes to learn, from the viewpoint of individual features, that is, 
essentially of their F-measure (see Section 2.3). This algorithm 
iterates over all classes and selects successively features with the 
best F-measure for a given class. 

Finally, we present results obtained for various sizes of fea-
ture sets (from 1 to 100). This is an important aspect in the con-
text of real-time systems, where we want to minimize the number 
of features to compute in real time. As we will see, EDS finds not 
only better features but also feature sets of lesser dimension. 

3.5. Results and comments 

The tables Figure 3, Figure 4 and Figure 5 show the results ob-
tained: 

For the two problems, analytical features found by EDS im-
prove the classification performance. The full sound problem is 
relatively easy. The use of the full reference feature set (dimen-
sion 100) yields a precision of about 99,9%. With the same di-
mension, analytical features yields the same precision. The gain 
becomes interesting if we consider feature sets of smaller dimen-
sion: 2 analytical features yield a precision of 89,5% versus 78% 
for general features. 

 
   Feature Set Dimension 

Experiment Description 100 90 75 50 25 15 10 5 3 2 1 
Reference IGR Train/Test 99,9 99,9 99,6 99,5 99 99,5 99,1 92,8 88,5 65,2 56 
Reference IGR 10-fold XV 99,9 99,5 99,5 99,5 99,1 98,6 98,4 92 82 60,5 59,3 

EDS IGR Train/Test 99,9 99,9 98,5 98,3 98,9 98,3 99,1 98 68,9 36,1 36,9 
EDS IGR 10-fold XV 99,9 99,9 99,9 98,8 98 98,4 98,2 97,8 64,7 36 21,2 

Reference EDS FS Train/Test 99,9 99,9 99,9 99,8 99,1 99,1 98,9 98,8 93,6 80,8 67,2 
Reference EDS FS 10-fold XV 99,9 99,6 99,6 99,4 98,6 98,4 98,8 98,3 93,4 78,1 61,6 

EDS EDS FS Train/Test 99,9 99,9 98,9 99,9 99,9 99,6 99,5 99 89,9 88,8 73,8 
EDS EDS FS 10-fold XV 99,9 99,9 98,9 99,7 99,6 99,5 99,4 99 91,3 89,5 73,6 

Figure 3. Results on full sounds. IGR stands for Information Gain Ratio. EDS FS denotes our fea-
ture selection algorithm based on the F-measure. Train/Test denotes the experiment in which the 
classifier is trained on the training database and tested on the test database. 10-fold XV denotes 
the 10-fold cross validation experiment on the test database. 
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   Feature Set Dimension 
Experiment Description 90 75 50 25 15 10 5 3 2 1 

Reference IGR Train/Test 94,8 95,6 93 76,8 76 76,1 73,5 65,9 54,2 44,6 
Reference IGR 10-fold XV 94,8 94,8 92,7 78,8 73,2 72,2 66,2 65,2 48,3 43,3 

EDS IGR Train/Test 94,8 95,6 92,9 81 76,6 76 69,6 65,7 54,2 44,5 
EDS IGR 10-fold XV 95,1 94,5 92,8 78,8 73,2 73,5 66,8 65,3 50,9 45 

Reference EDS FS Train/Test 94,7 94,7 94,8 92,4 90,8 88,7 87,2 84,1 71,4 52,4 
Reference EDS FS 10-fold XV 95,4 94,7 94 91,9 90,8 87,9 85,7 81,5 68,5 51,3 

EDS EDS FS Train/Test 96 95,5 95,1 93,9 93,5 93,4 93 89,9 86,2 71,7 
EDS EDS FS 10-fold XV 95,1 95 95,2 93,3 92,9 92,5 92,5 88,3 84,8 71,6 

Signal   75.8 75.8 72.5 67.6 67.1 46 44 36.6 37 35.5 

Figure 4. Results obtained with on pre-attacks. See above for abbreviations. The “Signal” line 
gives the performance of classifiers using the input signal directly as a feature. 

   Feature Set Dimension 

Experiment Description 90 75 50 25 15 10 5 3 2 1 

Reference IGR Train/Test 91,8 91,3 89,6 76,6 78,3 67,5 64,3 56,1 51,1 49
Reference IGR 10-fold XV 92,6 91,2 88,8 79,9 73,2 67,4 64,7 44,2 42,4 34,5

EDS IGR Train/Test 95,1 93,3 92,3 77,7 72,5 63 61,3 54,7 54,5 56,9
EDS IGR 10-fold XV 94,9 93,8 92,4 80,8 78,9 62,4 61 55,1 55,9 54,9

Reference EDS FS Train/Test 91,9 91,5 91 87,7 86,7 83,4 83,6 71,7 55,6 43,9
Reference EDS FS 10-fold XV 91,9 91,5 90,2 86,1 85,2 78,9 82 68,5 48,6 39

EDS EDS FS Train/Test 94,9 94,4 94 92,1 91,4 87,9 90,1 88,6 80,4 72,1
EDS EDS FS 10-fold XV 94,5 94 93,3 91,4 91,4 89 89,5 88 80,1 69,2

Signal   77.7 76.9 73.3 64.1 64.2 60 59.2 58.1 57.5 44

Figure 5. Results obtained with on post-attacks. See above for abbreviations. 

 

The attack problems are more difficult and interesting. Ana-
lytical features are still better than general ones, in particular 
for small feature sets. For the post-attack problem, 3 analytical 
features perform as well as the 50 best general features.  

We can note that the gain evolution depends on the feature 
selection algorithm used. The standard IGR algorithm does not 
select the best EDS features for small size feature sets (this 
result is already known, see [3]). However, our feature selec-
tion algorithm yields better results for all sizes of the feature 
set, as illustrated in Figure 6. This result shows again, if 
needed, the difficulty in interpreting the precision of classifiers 
directly. 

The performance gain brought by analytical features for 
small feature sets has a lot of advantages, in particular for real-
time applications. For the attack problem, 3 features yield a 
precision greater than that obtained with 50 reference features. 
These features are the following: 

Abs (Log (Percentile (Square (BpFilter (x, 764, 3087)), 64))) 

Centroid (MelBands (Differentiation (HpFilter (Power (Normalize (x), 
3), 100)), 6)) 

Abs (Sum (Arcsin (Mfcc (Hann (HpFilter (x, 19845)), 20)))) 

50

55

60

65

70

75

80

85

90

95

100

90 75 50 25 15 10 5 3 2 1

Ref EDS

Figure 6. Analytical vs. reference features on attacks 

This particular result allows us to consider real-time im-
plementations: on a 3GHz Pentium IV PC, the computation of 
the 3 features for a 2,8 ms signal takes about 3 ms, to be com-
pared to the computation of 50 generic features, which takes 
12 ms, that is 4 times slower. 

4. CONCLUSION 

We have presented a method for creating audio features, called 
analytical, by composing basic signal operators, to improve the 
performance of classification algorithms. We have illustrated 
this idea on audio classification problems dealing with 
Pandeiro sounds. In all cases (classifying full sounds, or only 
portions of the attacks) analytical features do improve the per-
formance of classification, as compared to results obtained with 
generic, Mpeg-7 like features, in a bag-of-frame approach. The 
gain is notable both in terms of classification precision and 
feature set size. Moreover, analytical features improve classifi-
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cation algorithms independently of any other optimization 
process (such as boosting, bagging or ad hoc approaches). 
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7. ANNEXES 

All the sounds and results of this study are made avail-
able to interested readers, as well as feature files (Weka 
format): http://SecondAuthorWebSite/pandeiro 

7.1. Annex 1 – Basic EDS operators 

The list of basic operators used by EDS in this study is the 
following: 

Abs 
Arcsin 
AttackTime 
Autocorrelation 
Bandwidth 
BarkBands 
Bartlett 
Blackman 
BpFilter 
Centroid 
Chroma 
Correlation 
dB 
Differentiation 
Division 
Envelope 
Fft 
FilterBank 
Flatness 
Hamming 
Hann 
Hanning 
HarmSpectralCentroid 
HarmSpectralDev 
HarmSpectralSpread 

HarmSpectralVar  
HFC 
HMean 
HMedian 
HMax 
HMin 
HpFilter 
Integration 
Inverse 
Iqr 
Length 
Log10 
LpFilter 
Max 
MaxPos 
Mean 
Median 
MelBands 
Min 
Mfcc0 
Mfcc 
Multiplication 
Normalize 
Nth 
NthColumns 

PeakPos 
Percentile  
Pitch 
PitchBands 
Power 
Range 
RHF 
Rms 
SpectralCentroid 
SpectralDecrease 
SpectralFlatness 
SpectralKurtosis 
SpectralRolloff 
SpectralSkewness 
SpectralSpread 
Split 
SplitOverlap 
Sqrt 
Square 
Sum 
Triangle 
Variance 
Zcr 
Harmonicity(Praat) 
Ltas(Praat) 

 
A precise description of operators can be found in [46]. 

7.2. Annex 2 – Reference features 

The list of general features used as the reference set is the 
following (features preceded by ‘*’ could not be com-
puted on the attack sounds because of their size): 
 
* HarmonicSpectralCentroid(Hanning(x)) 
* HarmonicSpectralDeviation(Hanning(x)) 
* HarmonicSpectralSpread(Hanning(x)) 
Log10(AttackTime(x)) 
*Pitch(Hanning(x)) 
SpectralCentroid(Hanning(x)) 
* SpectralFlatness(Hanning(x)) 
SpectralSpread(Hanning(x)) 
Centroid(x) 
PitchBands(Hanning(x),12.0) 
Mfcc0(Hanning(x),20.0) 
* HarmonicSpectralVariation(SplitOverlap(Hanning(x) ,2048,0.5)) 
Rms(x) 
RHF(Hanning(x)) 
HFC(Hanning(x)) 
SpectralKurtosis(Hanning(x)) 
SpectralSkewness(Hanning(x)) 
SpectralRolloff(Hanning(x)) 
Iqr(x) 
Chroma(Hanning(x)) 
MelBands(Hanning(x),10.0) 
BarkBands(Hanning(x),24.0) 
Zcr(x)   


