
 1

Contraintes, objets et connaissances

Pierre Roy, François Pachet

Laforia-IBP, Université Paris 6, Boîte 169

4, place Jussieu,

75252 Paris Cedex, France.

Tel: (33) 1 44277004

Fax: (33) 1 44277000

E-mail: {roy|pachet|jfp}@laforia.ibp.fr

Résumé : La satisfaction de contraintes à domaines finis est un paradigme puissant permettant de

résoudre de nombreux problèmes combinatoires complexes. Nous nous intéressons a l’intégration

de ces mécanismes au sein de la programmation par objets. Cette integration est envisagée en

prenant la PPO comme couche de représentation de base, les classes étant vues comme des

définitions naturelles de domaines structurés, et les méthodes associées aux classes fournissant alors

un langage pour exprimer des contraints complexes. Cet article décrit comment exploiter au mieux la

structure des domaines objets pour définir des problèmes combinatoires complexes. Nous illustrons

notre propos sur le système BackTalk développe au Laforia, et sur un problème d'harmonisation

musicale.

1. Introduction

Constraint satisfaction programming is a powerful paradigm for solving complex combinatorial

problems, which has gained attention recently. The notion of constraint was initially seen as an

algorithmic problem, e.g. by [Mackworth 77] and [Laurière 78] who see constraint graphs as

networks of relations for finite domains. Complex combinatorial problems have been studied

extensively in operation research, graph theory and artificial intelligence for over two decades,

leading to the elaboration of a rich theoretical framework. The main notion that came up from these

works is arc-consistency [Macworth 77]. Most existing algorithms are based on the exploitation of

arc-consistency : forward-checking [Haralick & Elliot 80], full look-ahead, and various extensions (e.g.

backjumping, [Prosser 93]). These mechanisms have been later incorporated into logic programming

languages ([Colmerauer 1990], CHIP [Van Hentenryck 89], CLP (R) [Jaffar & Lassez 87]). More recently

these mechanisms have been integrated with object-oriented languages [Puget 94], [Caseau 94] or

[Avesani et al. 90].

However, most difficult problems are still out of reach, even using state of the art CSP algorithms or

languages. The main reason is well known in AI : general-purpose algorithms are, by definition,

limited, because they do not have the knowledge specific to the problem instance. The idea of

exploiting knowledge about problem instances has been explored already by J.-L. Laurière in the Alice

system [Laurière 78]. Although Alice was able to adapt its reasoning to particular problem instances,

 2

it used only general-purpose heuristics and knowledge, and the user has no possibility of expressing

domain specific knowledge to help the engine.

Following Laurière, we are convinced that knowledge is needed to improve the efficiency of

enumeration algorithms. However, departing from his approach, we do not believe in general-

purpose heuristics that are applicable to all domains. We claim that domain-specific knowledge is the

key to improving the efficiency of CSPs, but that this knowledge must be carefully carved-up to fit the

constraints imposed by the CSP technology. This paper describes a framework for expressing and

solving combinatorial problems, in which domain specific knowledge can be expressed to increase

the efficiency of the resolution.

2. The BackTalk framework

In order to study the relevance of domain specific knowledge, we designed a framework called

BackTalk (standing for Backtracking in Smalltalk) [Roy & Pachet 97] that achieves simultaneously two

goals : 1) provide state of the art enumeration algorithms that are usable off-the-shelf to solve

combinatorial problems on arbitrary domains, and 2) provide « safe » entry points to express specific

knowledge, that will be exploited by the system to speed up the resolution.

2.1 Main loop

The main loop of the system consists is a general generate-and-test procedure augmented with

constraint propagation. At each step, the system picks up a variable, and instantiates it with a value

of its domain. This assignment is then propagated to the other variables, in order to reduce their

domains, as much as possible.

One of the key results of CSP is to show that the maximum amount of reduction is given by the

property of arc-consistency, if one considers constraints individually [Macworth 77]. The full look

ahead algorithm, for instance, consists in achieving arc-consistency of the whole CSP after each

instantiation. The literature provides us with many algorithms to enforce arc-consistency at each

step: AC-3 [Macworth 77], AC-5 [Deville & Van Hentenryck 91], etc. These algorithms basically loop

over the set of constraints, calling a function, called revise, on each constraint, until it reaches a

fixed point. This function achieves the arc-consistency of the constraint.

In practice, this general revise function can be drastically improved by taking the nature of the

constraint into account, either to specialize the general revise function into an equivalent and more

efficient function, or by implementing a weaker form of revision that reaches only an approximation

of full arc-consistency, but with a simpler complexity (e.g. the all-different constraint, [Régin 94]).

This procedure is usually called filtering procedure.

2.2 Heuristics

The framework allows to specify heuristics for the important steps of the main loop : choice of the

next variable, choice of the next value, and choice of the next constraint to filter. These heuristics are

represented as methods, called by the solver, so that each problem instance can specify its own set

of heuristics.

 3

2.3 Library of constraint classes

Recognizing the importance of exploiting the specificity of constraints, we designed our framework

with this idea in mind : constraints are represented as classes, each of which redefining the filtering

procedure, as a reasonable approximation of the arc-consistency procedure, thereby achieving a

good compromise between efficiency and arc-consistency.

In order to further increase the efficiency of filtering methods, the filtering process is event-based :

instead of calling a single filtering method for all cases of variable modification, the framework calls

up to 3 specialized filtering methods, corresponding to 3 main cases of variable modification :

instantiation, removal of one value, modification of the whole domain. Each class of constraint may

accordingly redefine up to 3 different filtering methods, adapted to each of these cases. The user

may also specify which events should be raised for each type of constraint.

3. Example : crosswords

We will illustrate how domain-specific knowledge can be expressed in BackTalk on a crossword

problem. The problem consists in finding a crossword, given an initial grid with black and white

squares and a list of words. The problem is a typical complex combinatorial problem : a reasonable

list of words contains about 150,000 words, a standard grid contains about 30 words of size 2 to 12,

leading to a search space of about 10100 combinations. CSP is therefore particularly well adapted to

solve it. We consider a formulation of this problem in which variables are the words to find, and

constraints are intersections between two words.

However, the CSP formalism is not enough to cope with the complexity of this problem. We will show

here how specific knowledge can be expressed in the BackTalk framework to speed up the

resolution. This knowledge is three-fold : topologic knowledge, lexical knowledge, and knowledge on

letter distribution.

3.1 Heuristics

A good heuristic for the choice of the next variable to instantiate is to chose the variable with the

smallest domain (so-called « first fail » principle). In the case of crosswords, we can use the intuitive

knowledge on crosswords that it is better to proceed region by region, rather than exploring several

areas at the same time. This corresponds to the « intensification principle » used in Tabu search for

instance [Glover 89]. The min size heuristic is a short-sighted strategy that has to be somehow

compensated. In this respect, intensification may be seen as a min-size heuristic augmented with a

rudimentary anticipation capability.

This knowledge is faithfully represented by a special heuristic requiring that the next variable will be

the variable with the smallest domain, within the set of variables connected to the current one.

3.2 Filtering method for intersection constraint

The crossword problem, in its basic form, contains only intersection constraints. Recall that by

default, the filtering on binary constraints consists in computing approximately a Cartesian product

of the two domains, and retaining only the consistent couples.

Knowledge on intersection can be used to improve the filtering of these constraints. Indeed, checking

that two sets of words are « consistent » can be computed much more faster, by noticing that the set

 4

of possible intersections is small : there are only 26 letters in the alphabet. The refined procedure is

therefore :

Compute possibleLetters (X,p) = the set of possible letters at position

p for variable X.

Remove from domain(Y) all words which do not contain one of

possibleLetters (X,p) at position p.

Compute possibleLetters (Y,p) = the set of possible letters at position

p for variable Y.

If possibleLetters (Y,p)  possibleLetters (X,p) then remove from

domain(X) all words which do not contain one of possibleLetters (Y,p) at

position p.

It is easy to show that this procedure achieves indeed arc-consistency for the intersection constraint.

The complexity is linear, to be compared to the quadratic complexity of the default filtering method!

Another characteristic of this problem is that domains are so large, and constraints are so weak, that

it is not worthwhile filtering systematically every constraint after each instantiation. Therefore, only

events corresponding to an instantiations will be raised.

3.3 Exploiting knowledge on letter distribution to combine intersection constraints

A last type of knowledge is that letters are not distributed uniformly in words. A typical example of

regularity is the fact that the letter « q » is almost always followed by letter « u ». There are

numerous examples of this kind of rule : « no word starts by the same consonant twice », and so

forth.

These rules basically give information on letters which belong to words not directly intersected with

the current word. In the case of a variable v instantiated with a word containing a « q », the high

probability for the crossing word to have a « u » following the « q » may be used to reduce the

domain of the variable v’ that is just parallel to variable v (see figure 1).

Figure 1. The letter « q » implicitly creates a relation between v and v’. This

relation corresponds exactly to the intersection between v’ and w.

cpu : 6192 fail : 598 choices : 603

cpu : 2004 fail : 181 choices : 186

This idea, expressed in terms of constraints and variables, amounts to consider dynamically created

constraint between two parallel words only when certain conditions are satisfied (here, letter « q »

appears). The filtering of this dynamically created constraint will reduce the domain of a variable not

directly related with the current variable. Here, this filtering is naturally represented by raising the

« domain » event for the constraint between v’ and w.

 5

3.4 Results

We conducted a series of experiments on various crosswords with and without these three kinds of

knowledge, which show clearly the advantage of our approach. Note that the triggering rules are

worth representing only if the filtering methods are efficient enough (more details are given in the

full paper).

4. Conclusion

We have described a framework for expressing and solving combinatorial problems, that is designed

to accommodate various kinds of domain-specific knowledge. We illustrate the framework and three

types of knowledge on a crossword solver.

5. References

Avesani, P. Perini, A. Ricci, F. (1990) COOL: An Object System with Constraints. Proc. of TOOLS'2, Paris

(France), June 1990.

Caseau, Y. (1994) Constraint Satisfaction with an Object-Oriented Knowledge Representation

Language. Journal of Applied Artificial Intelligence, 4, pp. 157-184.

Colmerauer, A. (1990) An introduction to Prolog-III. CACM, 33 (7): 69.

Deville, Y. Van Hentenryck, P. (1991) An efficient arc-consistency algorithm for a class of CSP

problems. Proc. of IJCAI '91, Chambéry (France), pp. 325-330.

Glover, F. (1989) Tabu search - Part I. ORSA Journal on Computing, 1 (3), pp. 190-206.

Haralick, R.M. Elliot, G.L. (1980) Increasing Tree Search Efficiency for Constraint Satisfaction

Problems. Artificial Intelligence, vol. 14, pp. 263-313.

Jaffard, J. Lassez, J.-L. (1987). Constraint logic programming. Proc. of 14th POPL’87, Principles Of

Programming Languages, Munich (Germany).

Laurière, J.L. (1978). A language and a program for stating and solving combinatorial problems.

Artificial Intelligence, Vol. 10, pp. 29-127.

Mackworth, A. (1977). Consistency on networks of relations. Artificial Intelligence, (8) pp. 99-118,

1877.

Roy, P. Pachet, F. (1997) Reifying Constraint Satisfaction in Smalltalk. Journal of Object-Oriented

Programming, to appear.

Prosser, P. (1993) Domain filtering can degrade intelligent backtracking search. Proc. of IJCAI'93,

Chambéry (France), pp. 262-267.

Puget, J.-F. (1994) A C++ implantation of CLP. Ilog Solver collected papers. ILOG technical report.

Régin, J-Ch. (1994) A filtering algorithm for constraint of difference in CSPs. Proc. of 12th AAAI' 94,

pp. 362-267, Seattle (Washington).

Van Hentenryck, P. (1989) Constraint satisfaction in Logic programming. Logic Programming Series,

MIT Press, Cambridge, MA, USA.

