
A Framework for expressing knowledge about constraint satisfaction problems, Roy, P. Pachet, F. Perrot, J.-F.

FLAIRS 97, Daytona (Fl)

A FRAMEWORK FOR EXPRESSING KNOWLEDGE

ABOUT CONSTRAINT SATISFACTION PROBLEMS

Pierre Roy, François Pachet, Jean-François Perrot

Laforia-IBP, Université Paris 6, Boîte 169, 4, place Jussieu,

75252 Paris Cedex, France.

E-mail: {roy|pachet|jfp}@laforia.ibp.fr

Abstract: This paper describes a framework for ex-

pressing and solving combinatorial problems. The

framework is especially designed to allow the expres-

sion of various types of knowledge on problem do-

mains, that can be exploited by the resolution mechan-

ism to speed up the search. We illustrate the frame-

work and the types of knowledge on a crossword

example.

1 Introduction

Constraint satisfaction programming is a powerful

paradigm for solving complex combinatorial prob-

lems, which has gained attention recently. The notion

of constraint was initially seen as an algorithmic prob-

lem, e.g. by [Mackworth 77] and [Laurière 78] who

see constraint graphs as networks of relations for finite

domains. Complex combinatorial problems have been

studied extensively in operation research, graph theory

and artificial intelligence for over two decades, lead-

ing to the elaboration of a rich theoretical framework.

The main notion that came up from these works is arc-

consistency [Mackworth 77]. Most existing algorithms

are based on the exploitation of arc-consistency: for-

ward-checking [Haralick & Elliot 80], full lookahead,

and various extensions (e.g. backjumping, [Prosser

93]). These mechanisms have been later incorporated

into logic programming languages ([Colmerauer

1990], CHIP [Van Hentenryck 89], CLP (R) [Jaffar &

Lassez 87]). More recently, these mechanisms have

been integrated with object-oriented languages [Puget

94], [Caseau 94] or [Avesani et al. 90].

However, most difficult problems are still out of

reach, even using state of the art CSP algorithms or

languages. The main reason is well known in AI:

general-purpose algorithms are, by definition, limited,

because they do not have the knowledge specific to

the problem instance. The idea of exploiting know-

ledge about problem instances has been explored

already by J.-L. Laurière in the Alice system [Laurière

78]. Although Alice was able to adapt its reasoning to

particular problem instances, it used only general-

purpose heuristics and knowledge, and the user has no

possibility of expressing domain specific knowledge

to help the engine.

Following Laurière, we are convinced that know-

ledge is needed to improve the efficiency of enumera-

tion algorithms. However, departing from his ap-

proach, we do not believe in general-purpose heuris-

tics that are applicable to all domains. We claim that

domain-specific knowledge is the key to improving

the efficiency of CSPs, but that this knowledge must

be carefully carved-up to fit the constraints imposed

by the CSP technology. This paper describes a frame-

work for expressing and solving combinatorial prob-

lems, in which domain specific knowledge can be

expressed to increase the efficiency of the resolution.

2 The BackTalk Framework

In order to study the relevance of domain specific

knowledge, we designed a framework called BackTalk

(standing for Backtracking in Smalltalk) [Roy & Pa-

chet 97] that achieves simultaneously two goals: 1)

provide state of the art enumeration algorithms that

are usable off-the-shelf to solve combinatorial prob-

lems on arbitrary domains, and 2) provide safe entry

points to express specific knowledge, that will be

exploited by the system to speed up the resolution.

There is a wealth of resolution algorithms for solv-

ing constraint satisfaction problems. The most widely

used are all based on two main procedures: a general

backtracking loop, which guaranties a complete ex-

ploration of the search space, and a constraint propa-

gation procedure, which reduces the problem during

backtracking. These algorithms instantiate progres-

A Framework for expressing knowledge about constraint satisfaction problems, Roy, P. Pachet, F. Perrot, J.-F.

FLAIRS 97, Daytona (Fl)

sively the variables of the problem, and after each

instantiation the constraints are considered to reduce

the domains of the remaining variables. In case of

failure, the system backtracks to a previous variable.

These algorithms mainly differ in the amount of con-

straint propagation performed at each step.

This variation in the amount of constraint propaga-

tion depends on two factors: a global strategy concern-

ing the whole problem, and a local strategy, applied to

each constraint. The global strategy is determined by

the resolution algorithm itself. The local strategy is

determined by the type of constraint considered. The

BackTalk framework is based on a reification of these

two strategies. We will review each of them in the two

following sections.

2.1 Local Strategies: Constraint Filtering

One of the key results of CSP is to show that, if one

considers constraints individually, the maximum

amount of reduction is given by the property of arc-

consistency [Macworth 77]. Arc-consistency is a

property of an individual constraint, that ensures that

there is no value in the domains that violates the con-

straint, regardless of the other constraints of the prob-

lem. Achieving arc-consistency for one constraint

allows to reduce the domains of its variables, without

loosing any solution. The default method for achiev-

ing arc-consistency (usually called revise) requires

the computation of the Cartesian product of the do-

mains of the variables.

In practice, this general revise procedure can be

drastically improved by taking the nature of the con-

straint into account, either to specialize the general

revise procedure into an equivalent and more effi-

cient procedure (e.g. the all-different constraint,

[Régin 94]), or by implementing a weaker form of

revision that reaches only an approximation of full

arc-consistency, but with a better complexity. This

procedure is usually called filtering.

Since the filtering procedure depends on the nature

of the constraint, we chose to represent constraints as

classes organized in a class hierarchy, and represent

filtering as a method (filter) of these classes (see

Figure 1). The root of the hierarchy (class

Constraint) implements filter with the default

revise procedure of Mackworth. Each subclass rede-

fines the filter method with a specialized filtering

algorithm adapted to the constraint. For instance, the

all-different constraint is represented by class

AllDiffCt, in which method filter basically im-

plements the procedure of [Régin 94].

Constraint

IntersectionCt

BinaryCt

<>
LinearConstraintCt

LinearEqualityCt
<

LetterDependencyCt

...

filter

filter

filter

filter

filter

filter

AllDiffCt

filter

Figure 1. The constraint hierarchy in BackTalk. Method

filter is redefined in subclasses.

2.2 Global Strategies: Resolution Algorithms

Filtering as described in the preceding section con-

cerns constraints taken individually. This filtering

procedure is controlled by resolution algorithms using

different global strategies.

The most radical strategy consists in filtering sys-

tematically all the constraints of the problem until a

fixed point is reached, after each instantiation. This

algorithm is called full lookahead [Nadel 88]. Various

algorithms were designed to reach efficiently this

fixed point: AC-3 [Macworth 77], AC-5 [Deville &

Van Hentenryck 91], etc. Full lookahead reduces do-

mains as much as possible, but it may be costly in

general.

Another widely used algorithm is forward-checking

[Haralick & Elliot 80]. In forward-checking, only

constraints involving the last instantiated variable are

filtered. This algorithm reduces less than full lookah-

ead, but also spends much less time in the reduction

phase. Other algorithms, such as back-jumping and

combinations of these methods are described in

[Prosser 93] and propose yet different compromises

between domain reductions and search.

Each of these algorithms is adapted to specific situa-

tions, and none of them is always better than the oth-

ers. Full lookahead is especially efficient when 1) the

filtering of a constraint is cheap and 2) when there are

strong dependencies between variables not directly

linked by a constraint. Forward-checking is interesting

in the case of "weakly constrained" problems, and

where constraint filtering is expensive. Unfortunately

these criteria (less constrained, strong dependencies)

are hard to specify formally, and thus to automate.

In order to let the user chose the most appropriate

algorithm for his problem, we represent algorithms

also as classes in BackTalk. These classes are also

organized into an inheritance hierarchy. An abstract

class (Solver) implements the default enumeration

mechanism. Each enumeration algorithm is

represented by a subclass which redefines parts of this

A Framework for expressing knowledge about constraint satisfaction problems, Roy, P. Pachet, F. Perrot, J.-F.

FLAIRS 97, Daytona (Fl)

mechanism (cf. Figure 2). BackTalk is designed in

such a way that constraint objects and algorithm ob-

jects are independent: any algorithm may use any

constraint. The only requirement of constraint objects

is that they should respond to the filtering messages.

Solver

FullLookAheadForwardChecking

BackJumping
...

Figure 2. The hierarchy of algorithms in BackTalk.

2.3 Heuristics

The framework allows to specify heuristics for the

important steps of the main loop: choice of the next

variable, choice of the next value, and choice of the

next constraint to filter. These heuristics are

represented as methods, called by the solver, so that

each problem instance can specify its own set of heu-

ristics.

3 Example: Crosswords

Let us illustrate how domain-specific knowledge

can be expressed in BackTalk on a crossword prob-

lem. The problem consists in finding a crossword,

given an initial grid with black and white squares and

a list of words. The problem is a typical complex

combinatorial problem: a reasonable list of words

contains about 150,000 words, a standard grid con-

tains about 30 words of size 2 to 12, leading to a

search space of about 10
100

 combinations. CSP is

therefore particularly well adapted to solve it. We

consider a formulation of this problem in which va-

riables are the words to find, and constraints are inter-

sections between two words.

However, the CSP formalism is not enough to cope

with the complexity of this problem. We will show

here how specific knowledge can be expressed in the

BackTalk framework to speed up the resolution. This

knowledge is three-fold: topologic knowledge, lexical

knowledge, and knowledge on letter distribution.

3.1 Heuristics

A good heuristic for the choice of the next variable

to instantiate is to chose the variable with the smallest

domain (so-called "first fail" principle). In the case of

crosswords, we can use the intuitive knowledge on

crosswords that it is better to proceed region by re-

gion, rather than exploring several areas at the same

time. This corresponds to the "intensification prin-

ciple" used in Tabu search for instance [Glover 89].

The min-size heuristic is a short-sighted strategy that

has to be somehow compensated. In this respect,

intensification may be seen as a min-size heuristic

augmented with a rudimentary anticipation capability.

This knowledge is faithfully represented by a spe-

cial heuristic requiring that the next variable will be

the variable with the smallest domain, within the set of

variables connected to the current one.

3.2 Choosing the Right Algorithm

The crossword problem is a typical example of a

"weakly constrained" problem. Intuitively, the idea is

that instantiating a variable with a given word will

have a limited impact on the variables not directly

crossing it. This is explained by the fact that the distri-

bution of letters in words is quite uniform, except for

special letters (such as "q"). Therefore, the instantia-

tion of one letter does not allow to deduce much in-

formation on the other letters of the word. Since the

instantiation of a word variable determines only one

character for every crossing word, it has little influ-

ence on the crossing words, and, in general, very little

influence on other, non-crossing words. Therefore we

chose naturally the forward-checking resolution algo-

rithm which performs the optimal amount of con-

straint propagation. The exceptional cases due to non

uniform distribution of letters is treated in section 3.4.

3.3 A Filtering Method for the Intersection Con-

straint

The crossword problem, in its basic form, contains

only intersection constraints. Recall that by default,

filtering constraints consists in computing approx-

imately the Cartesian product of the domains, and

retaining only the consistent tuples.

Knowledge on intersection can be used to improve

the filtering of these constraints. Indeed, checking that

two sets of words are consistent can be computed

much more faster, by noticing that the set of possible

intersections is small: there are only 26 letters in the

alphabet. The refined procedure is the following:

A Framework for expressing knowledge about constraint satisfaction problems, Roy, P. Pachet, F. Perrot, J.-F.

FLAIRS 97, Daytona (Fl)

filter intersection between X and Y:

• (i, j) := intersection of X and Y.
• Compute possibleLetters (X,i) = the set of
possible letters at position i for X.

• Remove from domain(Y) all words which do not
contain one of possibleLetters (X,i) at
position j.

• Compute possibleLetters (Y,j) = the set of
possible letters at position j for Y.

• If possibleLetters(Y,j) ⊄

possibleLetters (X,i) then remove from
domain(X) all words which do not contain one

of possibleLetters (Y,j) at position i.

It is easy to show that this procedure achieves arc-

consistency for the intersection constraint. The com-

plexity is linear, to be compared to the quadratic com-

plexity of the default filtering method !

3.4 Exploiting Knowledge on Letter Distribution

to Combine Intersection Constraints

A last type of knowledge is that all letters are not

distributed uniformly in words. A typical example of

regularity is the fact that the letter "q" is almost al-

ways followed by letter "u" (at least, in English and

French). There are numerous examples of this kind of

rule, such as: "no word starts by the same consonant

twice", or "j is never repeated twice", "letters are rare-

ly repeated three times", and so forth. These regulari-

ties are not always true, but only give strong indica-

tions on letters not yet found.

One simple way of representing this type of know-

ledge is with heuristics on the choice of values of

variables. The problem with this solution is that it

would be difficult to combine several of these rules.

Moreover these heuristics would have to be dynami-

cally created and removed during backtracking.

These rules basically give information on letters

which belong to words not directly intersected with

the current word. In the case of a variable v instan-

tiated with a word containing a "q", the high probabili-

ty for the crossing word to have a "u" following the

"q" may be used to reduce the domain of the variable

v’ that is just parallel to variable v (see Figure 3).

It is possible to express this piece of knowledge in

terms of constraints and variables, by considering a

virtual constraint between two parallel words v and

v', only when certain conditions are satisfied (here,

letter "q" appears). Of course, it would be awkward to

actually add dynamically this virtual constraint to the

problem, because this virtual constraint is already

represented by constraint u between v' and w.

q er e u i rv
v’

u ?

w

Figure 3. The letter "q" implicitly creates a relation be-

tween v and v’. This relation corresponds exactly to

the intersection between v’ and w.

A reasonable way to implement this "virtual con-

straint" is to represent each of these rules as a global

constraint, involving all the variables of the problem,

called LetterDependencyCt, which is given stati-

cally at the problem formulation phase. The statement

of this constraint consists in 1) a condition on values

of variables, and 2) a set of intersection constraints to

filter when the condition is satisfied. For instance, our

‘q’ � ‘u’ rule would be expressed as:

AS SOON AS
there exists a variable v, whose value
contains a "q"
THEN
filter the intersection constraint between
v', parallel to v, and w (perpendicular to
v at position of letter "q").

This constraint is endowed with a particular filtering

method, which triggers the filtering of the adequate

intersection constraints (u in our example), as soon as

the condition is satisfied. Therefore there is no modifi-

cation of the forward-checking algorithm.

3.5 Results

We conducted a series of experiments on cross-

words, with and without these three kinds of know-

ledge. Figure 4 illustrates the effect of exploiting

knowledge on letter distribution.

A. Word ‘antique’ is

fixed before the reso-

lution.

B. Without rule ‘q’ pre-

cedes ‘u’, word ‘rome’ is

chosen, which leads to

the development of a

useless search tree.

A Framework for expressing knowledge about constraint satisfaction problems, Roy, P. Pachet, F. Perrot, J.-F.

FLAIRS 97, Daytona (Fl)

C. When the rule ‘q’ precedes ‘u’, the solver only

instantiates the variable parallel to ‘antique’

with words having a ‘u’ at second position.

Figure 4. The resolution of a crossword.

These experiments show clearly that our approach

allows to reduce the domains of word variables, there-

by reducing the number of backtracks.

The following table gives execution times and num-

ber of failures when combining the various knowledge

representations described in this paper. Expectedly, the

best strategy is achieved when combining all three

types of knowledge with forward-checking.

Specialized
filtering

First fail
heuristic

Knowing
‘q’ ���� ‘u’

CPU
(in sec)

fails

NO NO NO > 3,600 > 5,000

YES NO NO 545 10,546

YES NO YES 166 3,396

YES YES NO 23 268

YES YES YES 6 36

Experimental comparisons between full lookahead

and our strategy led to the following conclusions: with

full lookahead, the system filters a lot of constraints.

However, due to the uniform distribution of letters in

words, there are only few additional domain reduc-

tions, compared to our strategy. Full lookahead and

our method explore similar search spaces, but the time

spent after each instantiation is dramatically smaller

using the latter.

4 Conclusion

We have described a framework for expressing and

solving combinatorial problems, that is designed to

accommodate various kinds of domain-specific know-

ledge. We illustrated the framework and three types of

knowledge on a crossword solver.

References

Avesani, P. Perini, A. Ricci, F. (1990) COOL: An

Object System with Constraints. Proc. of TOOLS'2,

Paris (France), Angkor, pp. 221-228.

Caseau, Y. (1994) Constraint Satisfaction with an

Object-Oriented Knowledge Representation Lan-

guage. Journal of Applied Artificial Intelligence,

Vol. 4, pp. 157-184.

Colmerauer, A. (1990) An introduction to Prolog-III.

CACM, 33 (7): 69.

Deville, Y. Van Hentenryck, P. (1991) An efficient arc-

consistency algorithm for a class of CSP problems.

Proc. of IJCAI '91, Chambéry (France), pp. 325-

330.

Glover, F. (1989) Tabu search - Part I. ORSA Journal

on Computing, 1 (3), pp. 190-206.

Haralick, R.M. Elliot, G.L. (1980) Increasing Tree

Search Efficiency for Constraint Satisfaction Prob-

lems. Artificial Intelligence, vol. 14, pp. 263-313.

Jaffard, J. Lassez, J.-L. (1987). Constraint logic pro-

gramming. Proc. of 14th POPL’87, Munich (Ger-

many).

Laurière, J.L. (1978). A language and a program for

stating and solving combinatorial problems. Artifi-

cial Intelligence, 10, pp. 29-127.

Mackworth, A. (1977). Consistency on networks of

relations. Artificial Intelligence, (8) pp. 99-118.

Nadel, B. (1988) Tree search and arc-consistency in

constraint satisfaction algorithms. Search in Artifi-

cial Intelligence, Springer-Verlag, pp. 287-340.

Roy, P. Pachet, F. (1997) Reifying Constraint

Satisfaction in Smalltalk. Journal of Object-

Oriented Programming, to appear.

Prosser, P. (1993) Domain filtering can degrade intelli-

gent backtracking search. Proc. of IJCAI'93,

Chambéry (France), pp. 262-267.

Puget, J.-F. (1994) A C++ implantation of CLP. Ilog

Solver collected papers. ILOG technical report.

Régin, J-Ch. (1994) A filtering algorithm for constraint

of difference in CSPs. Proc. of 12th AAAI'94, pp.

362-267, Seattle (Washington).

Van Hentenryck, P. (1989) Constraint satisfaction in

Logic programming. Logic Programming Series,

MIT Press, Cambridge, MA.

