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Abstract: This paper describes a framework for ex-

pressing and solving combinatorial problems. The 

framework is especially designed to allow the expres-

sion of various types of knowledge on problem do-

mains, that can be exploited by the resolution mechan-

ism to speed up the search. We illustrate the frame-

work and the types of knowledge on a crossword 

example. 

1 Introduction 

Constraint satisfaction programming is a powerful 

paradigm for solving complex combinatorial prob-

lems, which has gained attention recently. The notion 

of constraint was initially seen as an algorithmic prob-

lem, e.g. by [Mackworth 77] and [Laurière 78] who 

see constraint graphs as networks of relations for finite 

domains. Complex combinatorial problems have been 

studied extensively in operation research, graph theory 

and artificial intelligence for over two decades, lead-

ing to the elaboration of a rich theoretical framework. 

The main notion that came up from these works is arc-

consistency [Mackworth 77]. Most existing algorithms 

are based on the exploitation of arc-consistency: for-

ward-checking [Haralick & Elliot 80], full lookahead, 

and various extensions (e.g. backjumping, [Prosser 

93]). These mechanisms have been later incorporated 

into logic programming languages ([Colmerauer 

1990], CHIP [Van Hentenryck 89], CLP (R) [Jaffar & 

Lassez 87]). More recently, these mechanisms have 

been integrated with object-oriented languages [Puget 

94], [Caseau 94] or [Avesani et al. 90]. 

 

 

 

 

However, most difficult problems are still out of 

reach, even using state of the art CSP algorithms or 

languages. The main reason is well known in AI: 

general-purpose algorithms are, by definition, limited, 

because they do not have the knowledge specific to 

the problem instance. The idea of exploiting know-

ledge about problem instances has been explored 

already by J.-L. Laurière in the Alice system [Laurière 

78]. Although Alice was able to adapt its reasoning to 

particular problem instances, it used only general-

purpose heuristics and knowledge, and the user has no 

possibility of expressing domain specific knowledge 

to help the engine. 

Following Laurière, we are convinced that know-

ledge is needed to improve the efficiency of enumera-

tion algorithms. However, departing from his ap-

proach, we do not believe in general-purpose heuris-

tics that are applicable to all domains. We claim that 

domain-specific knowledge is the key to improving 

the efficiency of CSPs, but that this knowledge must 

be carefully carved-up to fit the constraints imposed 

by the CSP technology. This paper describes a frame-

work for expressing and solving combinatorial prob-

lems, in which domain specific knowledge can be 

expressed to increase the efficiency of the resolution.  

2 The BackTalk Framework 

In order to study the relevance of domain specific 

knowledge, we designed a framework called BackTalk 

(standing for Backtracking in Smalltalk) [Roy & Pa-

chet 97] that achieves simultaneously two goals: 1) 

provide state of the art enumeration algorithms that 

are usable off-the-shelf to solve combinatorial prob-

lems on arbitrary domains, and 2) provide safe entry 

points to express specific knowledge, that will be 

exploited by the system to speed up the resolution. 

There is a wealth of resolution algorithms for solv-

ing constraint satisfaction problems. The most widely 

used are all based on two main procedures: a general 

backtracking loop, which guaranties a complete ex-

ploration of the search space, and a constraint propa-

gation procedure, which reduces the problem during 

backtracking. These algorithms instantiate progres-
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sively the variables of the problem, and after each 

instantiation the constraints are considered to reduce 

the domains of the remaining variables. In case of 

failure, the system backtracks to a previous variable. 

These algorithms mainly differ in the amount of con-

straint propagation performed at each step. 

This variation in the amount of constraint propaga-

tion depends on two factors: a global strategy concern-

ing the whole problem, and a local strategy, applied to 

each constraint. The global strategy is determined by 

the resolution algorithm itself. The local strategy is 

determined by the type of constraint considered. The 

BackTalk framework is based on a reification of these 

two strategies. We will review each of them in the two 

following sections.  

2.1 Local Strategies: Constraint Filtering 

One of the key results of CSP is to show that, if one 

considers constraints individually, the maximum 

amount of reduction is given by the property of arc-

consistency [Macworth 77]. Arc-consistency is a 

property of an individual constraint, that ensures that 

there is no value in the domains that violates the con-

straint, regardless of the other constraints of the prob-

lem. Achieving arc-consistency for one constraint 

allows to reduce the domains of its variables, without 

loosing any solution. The default method for achiev-

ing arc-consistency (usually called revise) requires 

the computation of the Cartesian product of the do-

mains of the variables.  

In practice, this general revise procedure can be 

drastically improved by taking the nature of the con-

straint into account, either to specialize the general 

revise procedure into an equivalent and more effi-

cient procedure (e.g. the all-different constraint, 

[Régin 94]), or by implementing a weaker form of 

revision that reaches only an approximation of full 

arc-consistency, but with a better complexity. This 

procedure is usually called filtering. 

Since the filtering procedure depends on the nature 

of the constraint, we chose to represent constraints as 

classes organized in a class hierarchy, and represent 

filtering as a method (filter) of these classes (see 

Figure 1). The root of the hierarchy (class 

Constraint) implements filter with the default 

revise procedure of Mackworth. Each subclass rede-

fines the filter method with a specialized filtering 

algorithm adapted to the constraint. For instance, the 

all-different constraint is represented by class 

AllDiffCt, in which method filter basically im-

plements the procedure of [Régin 94]. 

 

Constraint

IntersectionCt

BinaryCt

<>
LinearConstraintCt
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<

LetterDependencyCt
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filter

filter

filter

filter

filter

filter

AllDiffCt

filter

 

Figure 1. The constraint hierarchy in BackTalk. Method 

filter is redefined in subclasses. 

2.2 Global Strategies: Resolution Algorithms 

Filtering as described in the preceding section con-

cerns constraints taken individually. This filtering 

procedure is controlled by resolution algorithms using 

different global strategies. 

The most radical strategy consists in filtering sys-

tematically all the constraints of the problem until a 

fixed point is reached, after each instantiation. This 

algorithm is called full lookahead [Nadel 88]. Various 

algorithms were designed to reach efficiently this 

fixed point: AC-3 [Macworth 77], AC-5 [Deville & 

Van Hentenryck 91], etc. Full lookahead reduces do-

mains as much as possible, but it may be costly in 

general. 

Another widely used algorithm is forward-checking 

[Haralick & Elliot 80]. In forward-checking, only 

constraints involving the last instantiated variable are 

filtered. This algorithm reduces less than full lookah-

ead, but also spends much less time in the reduction 

phase. Other algorithms, such as back-jumping and 

combinations of these methods are described in 

[Prosser 93] and propose yet different compromises 

between domain reductions and search. 

Each of these algorithms is adapted to specific situa-

tions, and none of them is always better than the oth-

ers. Full lookahead is especially efficient when 1) the 

filtering of a constraint is cheap and 2) when there are 

strong dependencies between variables not directly 

linked by a constraint. Forward-checking is interesting 

in the case of "weakly constrained" problems, and 

where constraint filtering is expensive. Unfortunately 

these criteria (less constrained, strong dependencies) 

are hard to specify formally, and thus to automate. 

In order to let the user chose the most appropriate 

algorithm for his problem, we represent algorithms 

also as classes in BackTalk. These classes are also 

organized into an inheritance hierarchy. An abstract 

class (Solver) implements the default enumeration 

mechanism. Each enumeration algorithm is 

represented by a subclass which redefines parts of this 
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mechanism (cf. Figure 2). BackTalk is designed in 

such a way that constraint objects and algorithm ob-

jects are independent: any algorithm may use any 

constraint. The only requirement of constraint objects 

is that they should respond to the filtering messages. 

Solver

FullLookAheadForwardChecking

BackJumping
...

 

Figure 2. The hierarchy of algorithms in BackTalk. 

2.3 Heuristics 

The framework allows to specify heuristics for the 

important steps of the main loop: choice of the next 

variable, choice of the next value, and choice of the 

next constraint to filter. These heuristics are 

represented as methods, called by the solver, so that 

each problem instance can specify its own set of heu-

ristics. 

3 Example: Crosswords 

Let us illustrate how domain-specific knowledge 

can be expressed in BackTalk on a crossword prob-

lem. The problem consists in finding a crossword, 

given an initial grid with black and white squares and 

a list of words. The problem is a typical complex 

combinatorial problem: a reasonable list of words 

contains about 150,000 words, a standard grid con-

tains about 30 words of size 2 to 12, leading to a 

search space of about 10
100

 combinations. CSP is 

therefore particularly well adapted to solve it. We 

consider a formulation of this problem in which va-

riables are the words to find, and constraints are inter-

sections between two words. 

However, the CSP formalism is not enough to cope 

with the complexity of this problem. We will show 

here how specific knowledge can be expressed in the 

BackTalk framework to speed up the resolution. This 

knowledge is three-fold: topologic knowledge, lexical 

knowledge, and knowledge on letter distribution. 

3.1 Heuristics 

A good heuristic for the choice of the next variable 

to instantiate is to chose the variable with the smallest 

domain (so-called "first fail" principle). In the case of 

crosswords, we can use the intuitive knowledge on 

crosswords that it is better to proceed region by re-

gion, rather than exploring several areas at the same 

time. This corresponds to the "intensification prin-

ciple" used in Tabu search for instance [Glover 89]. 

The min-size heuristic is a short-sighted strategy that 

has to be somehow compensated. In this respect,  

intensification may be seen as a min-size heuristic 

augmented with a rudimentary anticipation capability. 

This knowledge is faithfully represented by a spe-

cial heuristic requiring that the next variable will be 

the variable with the smallest domain, within the set of 

variables connected to the current one. 

3.2 Choosing the Right Algorithm 

The crossword problem is a typical example of a 

"weakly constrained" problem. Intuitively, the idea is 

that instantiating a variable with a given word will 

have a limited impact on the variables not directly 

crossing it. This is explained by the fact that the distri-

bution of letters in words is quite uniform, except for 

special letters (such as "q"). Therefore, the instantia-

tion of one letter does not allow to deduce much in-

formation on the other letters of the word. Since the 

instantiation of a word variable determines only one 

character for every crossing word, it has little influ-

ence on the crossing words, and, in general, very little 

influence on other, non-crossing words. Therefore we 

chose naturally the forward-checking resolution algo-

rithm which performs the optimal amount of con-

straint propagation. The exceptional cases due to non 

uniform distribution of letters is treated in section 3.4. 

3.3 A Filtering Method for the Intersection Con-

straint 

The crossword problem, in its basic form, contains 

only intersection constraints. Recall that by default, 

filtering constraints consists in computing approx-

imately the Cartesian product of the domains, and 

retaining only the consistent tuples. 

Knowledge on intersection can be used to improve 

the filtering of these constraints. Indeed, checking that 

two sets of words are consistent can be computed 

much more faster, by noticing that the set of possible 

intersections is small: there are only 26 letters in the 

alphabet. The refined procedure is the following: 
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filter intersection between X and Y: 

• (i, j) := intersection of X and Y. 
• Compute possibleLetters (X,i) = the set of 
possible letters at position i for X. 

• Remove from domain(Y) all words which do not 
contain one of possibleLetters (X,i) at 
position j. 

• Compute possibleLetters (Y,j) = the set of 
possible letters at position j for Y. 

• If possibleLetters(Y,j) ⊄ 

possibleLetters (X,i) then remove from 
domain(X) all words which do not contain one 

of possibleLetters (Y,j) at position i. 

It is easy to show that this procedure achieves arc-

consistency for the intersection constraint. The com-

plexity is linear, to be compared to the quadratic com-

plexity of the default filtering method ! 

3.4 Exploiting Knowledge on Letter Distribution 

to Combine Intersection Constraints 

A last type of knowledge is that all letters are not 

distributed uniformly in words. A typical example of 

regularity is the fact that the letter "q" is almost al-

ways followed by letter "u" (at least, in English and 

French). There are numerous examples of this kind of 

rule, such as: "no word starts by the same consonant 

twice", or "j is never repeated twice", "letters are rare-

ly repeated three times", and so forth. These regulari-

ties are not always true, but only give strong indica-

tions on letters not yet found. 

One simple way of representing this type of know-

ledge is with heuristics on the choice of values of 

variables. The problem with this solution is that it 

would be difficult to combine several of these rules. 

Moreover these heuristics would have to be dynami-

cally created and removed during backtracking. 

These rules basically give information on letters 

which belong to words not directly intersected with 

the current word. In the case of a variable v instan-

tiated with a word containing a "q", the high probabili-

ty for the crossing word to have a "u" following the 

"q" may be used to reduce the domain of the variable 

v’ that is just parallel to variable v (see Figure 3). 

It is possible to express this piece of knowledge in 

terms of constraints and variables, by considering a 

virtual constraint between two parallel words v and 

v', only when certain conditions are satisfied (here, 

letter "q" appears). Of course, it would be awkward to 

actually add dynamically this virtual constraint to the 

problem, because this virtual constraint is already 

represented by constraint u between v' and w. 

q er e u i rv
v’

u ?

w

 

Figure 3. The letter "q" implicitly creates a relation be-

tween v and v’. This relation corresponds exactly to 

the intersection between v’ and w. 

A reasonable way to implement this "virtual con-

straint" is to represent each of these rules as a global 

constraint,  involving all the variables of the problem, 

called LetterDependencyCt, which is given stati-

cally at the problem formulation phase. The statement 

of this constraint consists in 1) a condition on values 

of variables, and 2) a set of intersection constraints to 

filter when the condition is satisfied. For instance, our 

‘q’ � ‘u’ rule would be expressed as: 

AS SOON AS  
there exists a variable v, whose value 
contains a "q" 
THEN 
filter the intersection constraint between 
v', parallel to v, and w (perpendicular to 
v at position of letter "q"). 

This constraint is endowed with a particular filtering 

method, which triggers the filtering of the adequate 

intersection constraints (u in our example), as soon as 

the condition is satisfied. Therefore there is no modifi-

cation of the forward-checking algorithm. 

3.5 Results 

We conducted a series of experiments on cross-

words, with and without these three kinds of know-

ledge. Figure 4 illustrates the effect of exploiting 

knowledge on letter distribution. 

    

A. Word ‘antique’ is 

fixed before the reso-

lution. 

B. Without rule ‘q’ pre-

cedes  ‘u’, word ‘rome’ is 

chosen, which leads to 

the development of a 

useless search tree. 
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C. When the rule ‘q’ precedes ‘u’, the solver only 

instantiates the variable parallel to ‘antique’ 

with words having a ‘u’ at second position. 

Figure 4. The resolution of a crossword. 

These experiments show clearly that our approach 

allows to reduce the domains of word variables, there-

by reducing the number of backtracks. 

The following table gives execution times and num-

ber of failures when combining the various knowledge 

representations described in this paper. Expectedly, the 

best strategy is achieved when combining all three 

types of knowledge with forward-checking. 

Specialized 
filtering 

First fail 
heuristic 

Knowing 
‘q’ ���� ‘u’ 

CPU 
(in sec) 

fails 

NO NO NO > 3,600 > 5,000 

YES NO NO 545 10,546 

YES NO YES 166 3,396 

YES YES NO 23 268 

YES YES YES 6 36 

Experimental comparisons between full lookahead 

and our strategy led to the following conclusions: with 

full lookahead, the system filters a lot of constraints. 

However, due to the uniform distribution of letters in 

words, there are only few additional domain reduc-

tions, compared to our strategy. Full lookahead and 

our method explore similar search spaces, but the time 

spent after each instantiation is dramatically smaller 

using the latter. 

4 Conclusion 

We have described a framework for expressing and 

solving combinatorial problems, that is designed to 

accommodate various kinds of domain-specific know-

ledge. We illustrated the framework and three types of 

knowledge on a crossword solver. 
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