
ECAI98 Workshop on Non-binary Constraints, Régin, J.-C. et al. Eds, August 98. 27

Using Symmetry of Global Constraints to Speed up
the Resolution of Constraint Satisfaction Problems

Pier re Roy1 and François Pachet 2

1 LIP6, Boîte 169, 4 Place Jussieu, 75 252 Paris Cedex 05, France. e-mail:
roy@poleia.lip6.fr
2
 SONY CSL-Paris, 6 rue Amyot, 75 005 Paris, France. e-mail:

pachet@csl.sony.fr

Abstract. Symmetry in constraint satisfaction problems (CSP) can be
used to either compute only a subset of the total solution set, or to prune
branches of the search tree. However, detecting symmetry in general is a
difficult task.
 In this paper, we address the problem of detecting and exploiting a
particular class of symmetry called intensional permutability, which is
based on the notion of interchangeability between variables and can be
detected with a very small overhead. This kind of symmetry is detected by
collecting information on symmetrical properties of individual constraints.
This method works particularly well on problems designed using global
constraints.
 We show how intensional permutability dramatically reduces the search
tree for some problems. We propose a simple method to exploit it, which
can be implemented as a lightweight extension to most resolution
algorithms based on backtracking. We illustrate the method on several
symmetrical problems, such as a classical layout problem and the
pigeonhole problem, stated with a global constraint. Finally, we extend
the method to symmetries involving groups of variables.

1 I NTRODUCTION

Constraint satisfaction is a powerful paradigm for stating and
solving complex combinatorial problems. The constraint
satisfaction formalism was primarily designed as an algorithmic
discipline [1] in which a problem is stated by characterizing a priori
what is a solution. The resolution being undertaken by a general
enumeration algorithm based on a tree search procedure [2]
augmented with constraint propagation mechanisms [3, 4, 1]. This
formalism was intended to be efficient, general-purpose and
declarative as well.

However, the original formalism handles only binary constraints
defined in extension, that is by the list of consistent instantiations of
the variables it involves. These two limitations are not essential
because 1) in the context of finite-domain problems, any constraint
can be stated in extension and 2) any constraint can be fairly
represented by a set of binary constraints.

Practically, handling constraints defined in extension leads to
bloated problems and inefficient constraint propagation
mechanisms. Moreover, most constraint problems are difficult to
state with binary constraints because representing relations linking
more than two variables requires to introduce several intermediate
binary relations. Besides, lots of additional constraints and
variables are needed, which increases the size of the problem, thus
the complexity of the resolution.

Therefore, non-binary constraints, defined by formulas, are keys
to reaching expected efficiency and declarativity for constraint
satisfaction systems.

First, non-binary constraints can be used to speed up the
resolution. Indeed, global filtering methods can be defined for non-
binary constraints, which perform arc consistency, or any similar

property, efficiently. This is e.g. the case complex constraints such
as the global difference constraint [Régin 94] or global cardinality
constraints [Régin 96], but also for standard linear constraints.

Second, using non-binary constraints allows to improve the
declarative aspect of constraint satisfaction. Indeed, using non-
binary constraints prevents the user from the task of decomposing
the constraints of its problem in a set of binary constraints. For
instance, consider n variables that are required to take different
values. Using binary constraints, one would need to state
n.(n - 1) / 2 binary difference constraints, while a single global
difference constraint can do the job more efficiently [Régin 94].

There are a few more arguments in favor of non-binary
constraints. One of them is that many complex well-known
properties, coming from graph theory or operation research, can be
expressed by non-binary constraints. Consider for instance the
cycle constraint provided by CHIP [5], which can be used to state
complex relations between variables straightforwardly. Moreover,
this constraint is efficiently handled by specific filtering algorithms.

Another argument is that non-binary constraints are keys to
implement sophisticated resolution mechanisms such as formal
reasoning, as successfully experimented by J.-L. Laurière in the
ALICE system [Laurière 78].

Despite the sophisticated techniques developed so far, many

constraint satisfaction problems remain difficult to solve, and this is
not surprising because the general constraint satisfaction problem is
shown to be NP-complete.

However, even simple problems are out of reach for standard
constraint-based resolution techniques. This is for instance the case
of problems made up of several similar sub-problems. Many works
were devoted to finding techniques adapted to such cases. For
instance, research focused on finding better heuristics, decomposing
problems [6, 7], considering the topology of the problem [8], or
representing domain-specific knowledge (e.g. formal reasoning to
solve numerical problems [9]).

There is another kind of problems that is surprisingly difficult to
solve by standard constraint satisfaction techniques: symmetrical
problems, whose paradigm is the famous pigeonhole problem
[Puget 93].

It was already shown that symmetries could be used to speed up
the search. For example, works of [10, 11] focus on symmetries
inside the domains of variables while other works, e.g. [Crawford et
al. 96] and [Puget 93], treats the case of symmetries between
variables (see Section 2 below). They propose to introduce
additional constraints to break the symmetry of the problem, thus
reducing the complexity of the resolution.

In this paper, we focus on symmetry occurring between
variables. First, we show that intrinsic properties of constraints can

ECAI98 Workshop on Non-binary Constraints, Régin, J.-C. et al. Eds, August 98. 28

be used to detect symmetries. This detection is based on the
exploitation of properties of non-binary constraints. Second, we
show that, once detected, symmetries can be exploited
straightforwardly by modifying the resolution algorithm. Moreover,
this modification is shown compatible with every resolution
algorithm based on the backtracking + propagation scheme.
Finally, we extend our method to complex symmetries, supported
by groups of constrained variables.

2 SYMMETRICAL CSPS

Many constraint satisfaction problems are symmetrical, in the sense
that several solutions are equivalent with respect to permutations of
some of their elements. Depending on what elements are
permutable, different kinds of symmetries can be exhibited. We
review below two of them: symmetry on values and on variables.

Symmetry on values occurs when several values in the domain of
a given variable are interchangeable. For instance, consider the
formulation of the queen problem where each queen is a variable
whose domain contains all the squares of the chessboard. A 90-
degree rotation of the chessboard leaves the problem unchanged.
This rotation corresponds to the systematic permutation of square
(i,j) with square (j,i), which maps every solution onto another one.
A survey of this kind of symmetry can be found in [11, 10].

Symmetry on variables corresponds to the situation where
several variables play the same role. In this case, permuting similar
variables maps every solution onto another one. A classical
example is the pigeonhole problem, i.e. placing n pigeons in n-1
holes, with the constraint that one hole accommodates at most one
pigeon. Consider the formulation of the problem with one variable
for each pigeon, whose domain is the set of holes, and a single n-
ary difference constraint. In the context of classical enumeration
techniques, the complexity of this problem is in O(n!), and even
small problem instances require a huge computation time. Of
course, a human would detect immediately that the problem has no
solution, using some kind of commonsense knowledge: one cannot
find an injection from a bigger set into a smaller set. This kind of
inference is, in general, out of reach for classical constraint solvers.
In this problem, there is a symmetry on variables, since pigeons are
indistinguishable. This property can be used during the search to
avoid repeatedly visiting “equivalent” parts of the search tree.

Another example is the n-queen problem, in which permuting any
two variables leaves the problem unchanged. In this case,
symmetry can be exploited to compute only a subset of the whole
solution set. Table 1 below illustrates the influence of a symmetry
detection on these two problems:

Table 1. Influence of the symmetry exploitation on the size of the search
tree, on the number of solutions, and on the resolution time

Problem

No symmetry detection Symmetry detection

 Tree size
(solutions)

CPU
(sec)

Tree size
(solutions)

CPU
(sec)

6 pigeons 119 (0) 0.213 15 (0) 0.042

7 pigeons 719 (0) 1.031 31 (0) 0.064

8 pigeons 5,039 (0) 7.619 63 (0) 0.102
9 pigeons 40,319 (0) 61.902 127 (0) 0.228

5 queens 3,263 (1200) 13 300 (10) 0.9

Notice that the two types of symmetry are distinct. For instance,

in the queen problem, symmetry on values represents a geometrical

property of the chessboard while symmetry on variables represents
the fact that queens are indistinguishable. The latter is independent
of the topology of the chessboard.

This paper addresses the problem of detecting and exploiting
automatically symmetry holding on variables. After a review of the
main works in this area, we define a particular class of symmetry,
based on a notion of permutability of variables, called intensional
permutability.

Intensional permutability is a relation between variables that is
computed from properties of the constraints. This property highly
depends on the nature of the constraints of the problem, especially
on their arity. More precisely, we will show that the use of global
(non-binary) constraints is a key to detecting symmetry on
variables.

We propose a simple scheme to exploit this symmetry, which can
be implemented as a lightweight extension to most resolution
algorithms. This method proves efficient on a whole class of
problems, such as classical layout problem or the pigeonhole
problem, and it generates a negligible overhead. Finally, we extend
the method to symmetry involving composite structures.

3 STATE OF THE ART

The main result on symmetry on variables, presented by Puget [12],
is outlined in this section.

Definition 1 CSP. Let E be a finite set. A CSP P on E consists of
the following elements:

- A set V={v1, …, vn}; the vi are the variables of P
- A mapping D :V → P(E); D(vi) is the domain of vi . We call

D the Cartesian product of the domains: D=D(v1)×…×D (vn)
- A finite set C. Elements of C are the constraints
- A mapping r:C → P (D); ∀c∈ C; r(c) is the set of tuples

satisfying c, and is called the extension of c

In this definition, it is implicitly considered that every constraint
involves all the variables of P. In the rest of this paper, the
expression “the variables of constraint c” denotes the variables
actually involved in the constraint.

Definitions 2 Instantiation and solution. An instantiation of the
variables is any s∈ D. A solution s of P is an instantiation such
that s∈ r(c) for every c∈ C. (i.e. s satisfies all the constraints)
The solution set of P will be denoted by S(P) or simply S.

Let ∏ be the permutation group of the finite set { 1,…,n} . There
is a canonical left-action of ∏ on the set D of the instantiations of
the variables defined by:

∀(σ,s) ∈ ∏ × D ; σ.s = (sσ(1) , sσ(2) , …, sσ(n)).

Definition 3 Consistent permutation. A consistent permutation is
a permutation that maps any solution onto another one.

The set of consistent permutations, equipped with the law coming
from ∏ is a subgroup Γ of ∏. By definition of Γ, S is stable for the
action of Γ. Thus, Γ defines an equivalence relation3 ≡ on the
solutions set S. When Σ = ∅, P is said to be symmetrical. The
goal is therefore to compute S/≡ instead of S, in order to avoid
computing equivalent solutions.

The central result of [12] is that, for any symmetrical CSP P,
there exists a non-symmetrical CSP P’ , deduced by adding new
constraints to P, whose solution set is S/≡. However, deducing P’
from P is expected to be as difficult as solving P. This remark
suggests that the notion of consistent permutation is too general.

3 When G acts on set E, the relation R defined by: ∀ (x,y) ∈ E × E ; x R y iff
∃ g ∈ G such that g.x = y, is an equivalence relation

ECAI98 Workshop on Non-binary Constraints, Régin, J.-C. et al. Eds, August 98. 29

4 I NTENSIONAL PERMUTABI LITY

In this section, we define a stronger, thus less general, notion of
symmetry on variables: symmetry that can be deduced from
intrinsic properties of constraints, instead of being computed from
their extensions. We do not regard the extension of a constraint as
intrinsic since it depends on the domains of its variables.

Intuitively, two variables of a CSP are intensionally permutable if
they play the same role for every constraint of the problem.

4.1 Preliminary Remarks

In the original formalism of CSP [1] (see definition above), a
constraint is defined by the set of its consistent tuples. This is the
extensional definition of the constraint.

Constraints can also be defined intensionally, that is to say by a
formula of satisfaction. Remark that in the context of finite-domain
constraint satisfaction, the two definitions are equivalent.

The method we propose to detect symmetry on variables relies
on two ideas. The first idea is to exploit symmetrical properties of
individual constraints to deduce symmetry of the whole CSP. The
second idea is that symmetrical properties of a constraint can be
deduced directly from its intensional definition, without considering
its extension.

Let us illustrate these two ideas on the n-ary difference
constraint. This constraint states that n variables v1, v2, …, vn have
different values. In this constraint, all the variables play exactly the
same role. This is an intrinsic property of the constraint, which
holds independently of any problem instance. This property is
called intensional permutability and is defined in Section 4.2.

Remark that the general difference constraint was addressed by
[13], who proposed a filtering method to enforce arc consistency in
polynomial time. In the case of the pigeonhole problem, this allows
to prove that there is no solution in polynomial time. It is important
to note that our purpose and the one of Régin are complementary,
and can be used simultaneously.

Technically, such symmetry corresponds to a partition of the
variable set into subsets of intensionally permutable variables.
These subsets are called intensional permutability classes
(IP-classes for short). IP-classes represent to the idea that
permutable variables will undergo the same events, i.e. the same
domain reductions, during the resolution of the problem. This is the
case when the problem is solved using any enumeration algorithm
based on the property of arc consistency. Here are examples of
IP-classes for standard constraints:
• The n-ary difference constraint is symmetrical. All the variables
of the constraint are in a single IP-class.
• Linear constraints are not symmetrical in general. For instance,
consider the following linear equality, involving coefficients:

10=� ��
��α

There is one IP-Class for each different value of the αi .

• Comparison constraint, v > w, has two IP-classes: { v} and { w} .
In all cases, the constrained variables not involved in the

constraint are in an additional IP-class.
The IP-classes of all the constraints will be combined together to

yield global IP-classes gathering permutable variables of the
problem. The combination consists in intersecting the IP-classes of
all constraints. Once computed, the IP-classes of the whole
problem can be exploited “on the fly” during the resolution to avoid
useless exploration, as described in Section 5.3.

We now formalize the notion of intensional permutability, and
compare it with the theoretical consistency defined in Section 3.

4.2 Definitions

Each constraint of the problem can be seen as a sub-problem likely
to be symmetrical. The he following concept embodies this idea:

Definition 4 Sub-CSP generated by a constraint. Let c be a
constraint in a problem P. The sub-CSP of P generated by c, noted
P(c), is the following CSP: P(c) = (V, D, {c}, r |{c}).

We now define the notion of strongly permutability:

Definitions 5 Strong permutability. Two constrained variables,
u and v, are said to be strongly permutable if, and only if, for every
constraint c of P, the transposition τu,v is consistent for P(c). If u
and v are strongly permutable, the corresponding transposition,
namely τu,v, is said, by extension, to be also strongly permutable.

The group Σ generated by strongly permutable transpositions is a
subgroup of Γ (defined in Section 3). By definition, checking the
strong permutability of two variables, say u and v, requires the
study of the extensions of all the constraints involving u and v,
which is an expensive process! To avoid this process, we introduce
the definition of intensional permutability, which is based on
IP-classes, and compare it to strong permutability.

Definition 6 Intensional permutability. Two variables are said
to be intensionally permutable if, for every constraint c, they are in
the same IP-class for c. The corresponding transposition, namely
τu,v, is also said to be intensionally permutable.

This relation can be computed a priori for each variable u, by
simply intersecting the IP-classes containing u, for all the
constraints of the problem. However, the group Ψ generated by
intensionally permutable transpositions of the variables does not act
on S, because the domains are not taken into account. As a
counter-example, consider the CSP defined by u≠v, where
D(u)={ 1, 2} and D(v)={ 1, 2, 3} . Although this constraint is
symmetrical, the transposition τu,v maps solution (1, 3) onto (3, 1),
which is not a solution (because 3 is not in the domain of u). (τu,v is
not consistent in the sense of Puget.) Hence, Ψ does not act on S.

Considering domains is therefore necessary to ensure the
soundness of our method. To do so it is enough to ensure that
variables having different domains at the statement of the problem
are not considered strongly permutable. A simple solution consists
in adding one global dummy constraint whose IP-classes are the
sets of variables having the same domain.

For instance, consider a CSP with three variables u, v and w
whose domains are respectively { 0, 1} , { 0, 1} and { 1, 2, 3} . In
this case, we add a constraint whose IP-classes are { u, v} and { w} .
Since the permutable variables will eventually be computed by
intersecting all the IP-classes, u and w will not be permutable.

Thanks to this additional constraint, Ψ now acts on S, thus
inducing an equivalence relation ≈ on S. Since computing S/≡
instead of S is out of reach, we will show ho to compute only S/≈.
Moreover, since Ψ contains consistent transpositions, it is a
subgroup of Σ, and therefore: Ψ ⊂ Σ ⊂ Γ ⊂ ∏. In the next two
sections, we show that in general, Σ ≠ Γ and that Ψ ≠ Σ.

4.3 Strong Consistency vs. Consistency

The following problem shows that consistency, in the sense of [12],
does not always imply strong-consistency; i.e. there are cases
where Σ ≠ Γ.

ECAI98 Workshop on Non-binary Constraints, Régin, J.-C. et al. Eds, August 98. 30

Consider the Ramsey problem (see
Figure 1), i.e. coloring the edges of K4
using at most two colors, in such a way
that there is no monochrome triangle. For
that problem, Σ = ∅, because for any
transposition p, one can find at least one
solution s such that p.s is not solution.
However, Γ is not empty since it
permutation: (X→Y→Z→X; U→V→T→U).

4.4 Intensional vs. Strong Per mutability

There are cases when two variables are strongly permutable
although they are not intensionally permutable. Consider the
cardinality constraint defined as follows: variable u represents the
number of variables having value 1 in set { v} , with
D(u)=D(v)={ 0,1} . In this very particular case, u and v are strongly
permutable for the constraint, since the following property holds:

(u=0 � v=0) and (u=1 � v=1)

This constraint is equivalent to an equality constraint, which is
symmetrical, while it has been stated as a cardinality constraint,
which is not, thus leaving the permutability between u and v
undetected. Therefore, Ψ ≠ Σ.

Such a situation rarely occurs before the resolution. However,
during the resolution, such permutability relations can appear, when
several variables have had their domains reduced. Considering
these situations would require the ability of dynamically
reformulating constraints, which is beyond the scope of this paper.

5 EXPLOI TING PERMUTABILI TY

In this section, we present a method for exploiting permutability
relations, both in order to compute fewer solutions (S/≈) and to
speed up the search. Our method is designed to fit in classical
constraint satisfaction techniques, i.e. techniques based on arc
consistency and backtracking.

5.1 The Backtracking Procedure

The most widely used resolution algorithms (e.g. forward checking,
full look-ahead) are based on a basic backtracking scheme that can
be abstractly described using the two following procedures:

f or war d()
{
 i f (cr t Var == ni l) cr t Var = new_var i abl e() ;
 i f (cr t Var == ni l) sol ut i on_f ound() ;
 cr t Val = new_val ue_f or (cr t Var) ;
 pr opagat e_i nst ant i at i on (cr t Var ß cr t Val) ;
 cr t Var = ni l ;

 i f (f ai l ur e) backt r ack()
 el se f or war d()
}

backt r ack()
{
 cr t Var = ol d_var i abl e() ;
 i f (cr t Var == ni l) no_sol ut i on() ;
 r emove_val ue_f r om_var (cr t Val , cr t Var) ;

 f or war d() ;
}

These procedures consist in instantiating progressively the
variables. After each step, the current partial instantiation of the
problem is checked against the constraints. If a constraint is
violated, the procedure backtracks to the last instantiation.

5.2 Our Method

The method presented in [12] for exploiting consistency relations
consists in adding constraints to the problem. This approach was
also used for propositional satisfiability in [14]. As said in Section
3, automating such a transformation is out of reach.

Instead, we propose to modify directly the backtracking
mechanism of the solver, by exploiting permutability relations after
failures. Indeed, any choice of value, say x, for a variable u that led
to a failure, can be safely removed from the domains of all variables
permutable with u, as soon as the failure is detected (see Figure 2).

���������	
��
��
���

��

� �

�

�

� �

��

��

��

�

�

� ��

� �

� �

Figure 2. The search tree of the 4-pigeonhole problem. Dashed lines
represent branches pruned by the method. Area F (horizontal hatches) is
the image of E (vertical hatches) by transposition τ1,2. Therefore, once E

has been explored, F can be safely pruned

This domain reduction is safe by virtue of the definition of
permutability. This can be proven by refutation since permuting the
values of u and v moves solutions from the left part of the search
tree (area E) to the right part (area F), and vice versa. Let s be such
a solution, in which v = x (in the right part). Solution s’ , obtained
from s by permuting the values of u and v would be located in area
E. Since E contains no solution, this is a contradiction.

5.3 I mplementation

The implementation of our method is straightforward, and consists
in inserting a domain reduction in the backtracking procedure:

backt r ack()
{
 cr t Var = ol d_var i abl e() ;
 i f (cr t Var == ni l) no_sol ut i on() ;
 r emove_val ue_f r om_var (cr t Val , cr t Var) ;
 f or ever y V per mut abl e wi t h cr t Var do
 {
 i f (not (i nst ant i at ed(V)))
 r emove_val ue_f r om_var (cr t Val , V) ;
 }
 f or war d() ;
}

The bold text is the sole modification of the algorithm to ensure
that each permutability class will be visited only once during the
search. This lightweight modification has no influence on the
constraint propagation mechanism, or on the choice of the
backtracking variable. It is therefore compatible with every
algorithm based on the “consistency + backtracking” scheme (e.g.
forward-checking, real full look-ahead and so forth, see [15]).

� �

�

�

�

�

Figure 1. The Ramsey

problem for K4

ECAI98 Workshop on Non-binary Constraints, Régin, J.-C. et al. Eds, August 98. 31

To be complete, our implementation requires two additional
computations, which can be made before the resolution: the
management of domains, by creating additional IP-classes (see
Section 4.2), and the computation of the intersections of all
IP-classes.

6 EVALUATION OF THE METHOD

In this section, we present our results on classical problems, and we
discuss the current limitations of the method. The compromise
obtained between the impact of the symmetry detection on the
overall resolution and the overhead in efficiency and
implementation is discussed in Section 8.

6.1.1 Two L ittle “ Uniform” Problems

Using our method improves the resolution of the pigeonhole
problem, since it detects right away that all the variables are
permutable. The complexity of the resolution (i.e. proving
unsatisfiability), is O(2n) instead of O(n!). More precisely, using
our method, the number of branches of the search tree developed is
2n-2, instead of (n-1)! For n =13, 2n-2=2047, while (n-1)!=40320.

As for the 8-queen problem, using the formulation given in
Section 1, the number of solution is 1,200. Using our method, only
10 solutions are computed. The size of the search tree passes from
3,263 to 300 branches (see Table 1).

6.1.2 A Mathematical Problem

Consider the following problem involving five variables x, y, z, t, u
and v whose domain is { 0, 1, …, 20} . The constraints are the
following three equalities:

x + y + z + t = 20
x + y + z + u = 20
x + y + z + v = 20

and a difference constraint between the five variables.
To prove the unsatisfiability of this problem, using a standard

resolution scheme, 1,228 backtracks are required.
The constraints representing the three equalities are obviously

symmetrical. If the difference constraint is represented by a set of
ten binary difference constraints, after intersecting the IP-classes,
no intensional permutability is detected.

On the contrary, if the difference constraint is represented by a
single global constraint, the three variables x, y and z are
intensionally permutable. In this case, the application of the method
allows the unsatisfiability to be detected with only 199 backtracks.
The resolution time decreases accordingly.

6.1.3 A Classical Layout Problem

A typical, and complex, symmetrical problem follows. Consider
the decision problem of placing several rectangular plates of various
dimensions into a rectangle area (see Figure 3). We assume that
the plates and the rectangle area have integer height and width.
Therefore, the problem can be stated as a finite-domain CSP. We
consider a definition where the position of each plate in the
rectangle is represented by a constrained variable. The domain of a
variable is the set of possible positions for the corresponding plate.
There is a single constraint, expressing that any two plates do not
overlap. This constraint is symmetrical and may be stated as such.
The system will therefore consider as permutable all plates having
the same domain, i.e. having same dimensions.

Figure 3. Putting plates in a rectangle. A solution is shown on the right.
Permuting similar plates does not change the solution

For example, consider the instance Data4 described page 272 of
[16], and illustrated by Figure 3. One has to place three 4×4
plates, four 2×2 plates, two 3×1 plates and one 2×1 plate on a
10×10 grid. Plates having same color are obviously permutable.

7 GENERALI ZATION OF THE METHOD

In the past sections, we addressed symmetry occurring between
single variables. We now generalize the method to symmetry
holding on groups of variables.

When solving structured problems, classical enumeration
algorithms are likely to apply repeatedly a same treatment to similar
sub-problems. The essential idea is that a treatment that failed for a
given sub-problem should not be applied to similar sub-problems.

Consider, for instance, the optimization problem corresponding
to the preceding Layout Problem: placing the plates so that the
height of the rectangle used is minimized. To state the problem,
one has to define a special variable representing the highest position
reached. The introduction of this variable changes the structure of
the resulting CSP (see Figure 4), whose statement follows:

Variables p1,…,pn (the plates), whose
domain is the set of possible position for
each plate. Variables h1,…,hn. hi
represents the highest position reached
by plate pi. Variable H, which
represents the global highest position
reached.

A non-overlapping constraint between
the pi’s. A constraint between H and the
hi’s. This constraint expresses that
H = max(h1,…,hn). n constraints linking
each pi with each hi, expressing that
hi = pi + yi, where yi is the height of
plate pi. Figure 4 shows a graphical
representation of the problem.

The additional constraints break the relations of permutability
since they are not symmetrical. However, similar plates remain
intuitively indistinguishable. The inconsistency comes from the fact
that now, the symmetry does not occur between the plate variables
themselves, but between composite structures that are not explicitly
represented as variables. These structures consist of one plate
variable and its corresponding height variable together with the
binary constraint linking them. In the next section, we extend our
method for exploiting such higher-level symmetry.

h1

p1

p2

p3

p4 h2

h3

h4

H

Non-symmetrical

Symmetrical

Figure 4. Graph of the

optimization layout
problem

ECAI98 Workshop on Non-binary Constraints, Régin, J.-C. et al. Eds, August 98. 32

7.1 Detecting Permutable Structures

Let us define the notion of constrained structure as a weak form of
sub-CSP. A constrained structure C consists of a set of variables,
denoted V(C), and a set of constraints (involving variables of V(C),
denoted C(C). Given a constrained structure C, the constraints in
C(C) are said to be internal; other constraints are external.

Given a CSP P, and a set of constrained structures of P, we build
a condensed CSP P’ such that the permutable classes of P
correspond to the permutable constrained variables of P’ . The
condensed CSP P’ is defined as follows:
• The variables of P' are the constrained structures of P and the
remaining constrained variables of P (i.e. variables that do not
belong to any constrained structure);
• The constraints of P' are constraints of P not internal to any
constrained structure. For the sake of uniformity, they are
reformulated to hold on the constrained structures instead of the
original variables.

Two constrained structures C1 and C2 are isomorphic if the
following one-to-one mappings do exist:

Φ:V(C1) → V(C2) and Ψ:C(C1) → C(C2)

such that for all c ∈C(C1) the following properties hold:

(i) ∀ c ∈C (C1); Φ(V(c))= Φ(V(Ψ(c))),

(ii) ∀ c ∈C(C1); Ψ(c) ⇔ c ; (i.e. c and Ψ(c) are similar)

(iii) ∀ v ∈V(C1); D(v) = D(Φ (v)).

Two constrained structures of a CSP are permutable if 1) they
are isomorphic and 2) the corresponding variables in the condensed
CSP are permutable. Hence, permutable constrained structures are
detected by applying the method to the condensed CSP.

For instance, in the plate problem, we can define constrained
structures as the composition of one plate variable and its
corresponding height variable together with the binary constraint
linking them. These constrained structures are clearly pair-wise
isomorphic. Moreover, the condensed CSP is symmetrical because
the external constraints (non-overlapping and maximum height) are
symmetrical for the constrained structures.

When considering large problems, detecting isomorphic
constrained structures “from scratch” might be a difficult issue.
However, we claim that in practice, isomorphic constrained
structures are explicit in the design of the problem. This is the case,
for instance, in the optimization layout problem above.

Once permutable constrained structures have been identified, we
have to modify the resolution algorithm to exploit them. This is the
purpose of the next section.

7.2 Modifying the Resolution Method

Permutable constrained structures are linked by an isomorphism
defining a one-to-one mapping between their respective variables.
The problem is that a variable and its image by the mapping are not
actually permutable since constrained structures can be partially
instantiated during the resolution.

Therefore, to prevent the method from omitting solutions, after a
backtracking, the domain reduction will be propagated only to those
variables that belong to constrained structures that have not yet
been partially instantiated.

backt r ack()
{
 cr t Var = ol d_var i abl e() ;
 i f (cr t Var == ni l) no_sol ut i on() ;
 r emove_val ue_f r om_var (cr t Val , cr t Var) ;
 f or ever y V per mut abl e wi t h cr t Var do
 {
 i f (not (i nst ant i at ed(V)))
 {

 if(V belong a non instantiated
 constrained structure)
 {
 remove_value_from_var(cr tVal,V);
 }
 }
 }
 f or war d() ;
}

The correctness of this method is not reported here, for reasons
of space limitations. We tested it on a set of instances of the layout
problem [16], results are reported in Table 2. The solution reported
here to exploit symmetry can be compared with the method
proposed in [16], which requires a radically new design of the
problem.

8 EFFICI ENCY

Table 2 shows results on optimization layout problems solved with
the BackTalk system [17, 18].

Table 2. CPU times for solving the optimization layout problem with
and without the method. Solved instances are described in [16]

Instance CPU not processed CPU processed
Data #4 0.016 sec. 0.01 sec.
Data #5 67.846 sec. 3.039 sec.
Data #6 12.915 sec. 0.917 sec.
Data #9 0.807 sec. 0.44 sec.

The cost of the method has two components. First, the method

requires the suppression of useless values after each backtracking.
The cost for these suppressions is very low and is systematically
compensated by the pruning effect gained. Second, the method
requires the computation of the IP-classes. As written in Section
4.1, computing IP-classes consists in intersecting sets of variables,
which can be done in polynomial time. Moreover, this process can
be achieved a priori, i.e. at problem statement.

However, the method is limited to symmetry between pairs of
permutable variables. As illustrated in Section 4.3, symmetries that
are more complex are not addressed by the method. Detecting and
exploiting efficiently such symmetry is a complex issue that would
require a radically different approach.

9 CONCLUSI ON

We presented a method for detecting and exploiting a particular
class of symmetry occurring in constraint satisfaction problems.
Although it does not take into account all symmetry on variables, it
drastically speeds up the resolution of non-trivial symmetrical
problems.

The method exploits intrinsic symmetrical properties of
individual constraints to decompose the set of variables into several
subsets of permutable variables.

ECAI98 Workshop on Non-binary Constraints, Régin, J.-C. et al. Eds, August 98. 33

The method depends on the design of the problem, especially on
the kind of constraints defined. More precisely, binary constraints
break the symmetry of the problem because they decompose the
problem into clusters containing at most two variables. Therefore,
representing global constraints as such, instead of representing them
by sets of binary constraints, is critical to ensure the success of the
method.

The method is sound and complete, because all the permutability
classes are visited at least once, and the entire solution set can be
reconstituted from the permutability relations. Moreover, it allows
a fast computation and a straightforward implementation,
compatible with every enumeration algorithm based on arc
consistency.

This method allows to get rid, in some sense, of highly
symmetrical problems such as the pigeonholes, but is also proved
useful on non-toy problems such as layout cutting. A finer
evaluation of the frequency of real world problems yielding non-
empty intensional permutability relations is under study.

We finally introduced an extension of the method to a broader
spectrum of symmetry occurring between implicit structures of
variables, which often occurs in structured problems.

REFERENCES

[1] A. K. Mackworth. Consistency in Networks of Relations. Artificial
Intelligence, 8(1), 99-118, 77
[2] R. Haralick and G. Elliot. Increasing Tree Search Efficiency for
Constraint Satisfaction Problems. Artificial Intelligence, 14, 263-313, 80
[3] C. Bessière and J.-Ch. Régin. Arc Consistency for General Constraint
Networks: Preliminary Results. IJCAI-97, Nagoya, Japan, 1, 398-404,
Aug 97
[4] Y. Deville and P. Van Hentenryck. An Efficient Arc Consistency
Algorithm for a Class of CSP Problems. IJCAI-91, 125-130, Chambéry, 91
[5] N. Beldiceanu and E. Contejean Introducing global constraints in CHIP
Journal of Mathematical and Computer Modelling, 20 (12), 97-123, 94
[6] E. C. Freuder and P. D. Hubbe. Extracting Constraint Satisfaction
Subproblems. IJCAI-95, 548-555, 95
[7] J. Larrosa. Merging Constraint Satisfaction Subproblems to Avoid
Redundant Search. IJCAI-97, Nagoya, Japan, 1:424-429, Aug. 97
[8] R. J. Bayardo and D. P. Miranker. An Optimal Backtrack Algorithm for
Tree-Structured Constraint Satisfaction Problems. Artificial Intelligence,
71, 159-181, 94
[9] J.-L. Laurière. A Language and a Program for Stating and Solving
Combinatorial Problems. Artificial Intelligence, 10(1), 29-127, 78
[10] E. C. Freuder and D. Sabin. Interchangeability Supports Abstraction
and Reformulation for Constraint Satisfaction. SARA-95, 95
[11] B. Benhamou. Study of Symmetry in Constraint Satisfaction Problems.
PPCP-94, Orcas Island, Washington, 246-254, May 94
[12] J.-F. Puget. On The Satisfiability of Symmetrical Constraint
Satisfaction Problems. ISMIS-93, Norway, 93
[13] J.-Ch. Régin. A Filtering Algorithm for Constraints of Difference in
CSPs. Proceedings of AAAI-94, 362-367, Seattle, Washington, 94
[14] J. D. Crawford, M. Ginsberg, E. M. Luks and A. Roy. Symmetry-
Breaking Predicates for Search Problems. Knowledge Representation,
Cambridge, MA, Nov. 96
[15] P. Prosser. Hybrid Algorithms for the Constraint Satisfaction Problem.
Computational Intelligence, 9, 268-299, 93
[16] ILOGSOLVER User’s Manual, 257-286, Ilog, France, 96
[17] P. Roy and F. Pachet. Reifying Constraint Satisfaction in Smalltalk.
Journal of Object-Oriented Programming, 10(4), 51-63, June-July 97
[18] J.-Ch. Régin, Generalized Arc Consistency for Global Cardinality
Constraint. IJCAI-96, Portland, Oregon, 1996.

