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Abstract. Symmetry in constraint satisfaction problems (CSP) can be 
used to either compute only a subset of the total solution set, or to prune 
branches of the search tree.  However, detecting symmetry in general is a 
difficult task. 
 In this paper, we address the problem of detecting and exploiting a 
particular class of symmetry called intensional permutability, which is 
based on the notion of interchangeability between variables and can be 
detected with a very small overhead.  This kind of symmetry is detected by 
collecting information on symmetrical properties of individual constraints.  
This method works particularly  well on problems designed using global 
constraints. 
 We show how intensional permutability dramatically reduces the search 
tree for some problems.  We propose a simple method to exploit it, which 
can be implemented as a lightweight extension to most resolution 
algorithms based on backtracking.  We illustrate the method on several 
symmetrical problems, such as a classical layout problem and the 
pigeonhole problem, stated with a global constraint.  Finally, we extend 
the method to symmetries involving groups of variables. 

1 I NTRODUCTION 

Constraint satisfaction is a powerful paradigm for stating and 
solving complex combinatorial problems.  The constraint 
satisfaction formalism was primarily designed as an algorithmic 
discipline [1] in which a problem is stated by characterizing a priori 
what is a solution.  The resolution being undertaken by a general 
enumeration algorithm based on a tree search procedure [2] 
augmented with constraint propagation mechanisms [3, 4, 1].  This 
formalism was intended to be efficient, general-purpose and 
declarative as well. 

However, the original formalism handles only binary constraints 
defined in extension, that is by the list of consistent instantiations of 
the variables it involves.  These two limitations are not essential 
because 1) in the context of finite-domain problems, any constraint 
can be stated in extension and 2) any constraint can be fairly 
represented by a set of binary constraints. 

Practically, handling constraints defined in extension leads to 
bloated problems and inefficient constraint propagation 
mechanisms.  Moreover, most constraint problems are difficult to 
state with binary constraints because representing relations linking 
more than two variables requires to introduce several intermediate 
binary relations.  Besides, lots of additional constraints and 
variables are needed, which increases the size of the problem, thus 
the complexity of the resolution. 

Therefore, non-binary constraints, defined by formulas, are keys 
to reaching expected efficiency and declarativity for constraint 
satisfaction systems. 

First, non-binary constraints can be used to speed up the 
resolution.  Indeed, global filtering methods can be defined for non-
binary constraints, which perform arc consistency, or any similar 

property, efficiently.  This is e.g. the case complex constraints such 
as the global difference constraint [Régin 94] or global cardinality 
constraints [Régin 96], but also for standard linear constraints. 

Second, using non-binary constraints allows to improve the 
declarative aspect of constraint satisfaction.  Indeed, using non-
binary constraints prevents the user from the task of decomposing 
the constraints of its problem in a set of binary constraints.  For 
instance, consider n variables that are required to take different 
values.  Using binary constraints, one would need to state 
n.( n - 1 ) / 2 binary difference constraints, while a single global 
difference constraint can do the job more efficiently [Régin 94]. 

There are a few more arguments in favor of non-binary 
constraints.  One of them is that many complex well-known 
properties, coming from graph theory or operation research, can be 
expressed by non-binary constraints.  Consider for instance the 
cycle constraint provided by CHIP [5], which can be used to state 
complex relations between variables straightforwardly.  Moreover, 
this constraint is efficiently handled by specific filtering algorithms. 

Another argument is that non-binary constraints are keys to 
implement sophisticated resolution mechanisms such as formal 
reasoning, as successfully experimented by J.-L. Laurière in the 
ALICE system [Laurière 78]. 

 
Despite the sophisticated techniques developed so far, many 

constraint satisfaction problems remain difficult to solve, and this is 
not surprising because the general constraint satisfaction problem is 
shown to be NP-complete. 

However, even simple problems are out of reach for standard 
constraint-based resolution techniques.  This is for instance the case 
of problems made up of several similar sub-problems.  Many works 
were devoted to finding techniques adapted to such cases.  For 
instance, research focused on finding better heuristics, decomposing 
problems [6, 7], considering the topology of the problem [8], or 
representing domain-specific knowledge (e.g. formal reasoning to 
solve numerical problems [9]). 

There is another kind of problems that is surprisingly difficult to 
solve by standard constraint satisfaction techniques: symmetrical 
problems, whose paradigm is the famous pigeonhole problem 
[Puget 93]. 

It was already shown that symmetries could be used to speed up 
the search.  For example, works of [10, 11] focus on symmetries 
inside the domains of variables while other works, e.g. [Crawford et 
al. 96] and [Puget 93], treats the case of symmetries between 
variables (see Section 2 below).  They propose to introduce 
additional constraints to break the symmetry of the problem, thus 
reducing the complexity of the resolution. 

In this paper, we focus on symmetry occurring between 
variables.  First, we show that intrinsic properties of constraints can 
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be used to detect symmetries.  This detection is based on the 
exploitation of properties of non-binary constraints.  Second, we 
show that, once detected, symmetries can be exploited 
straightforwardly by modifying the resolution algorithm.  Moreover, 
this modification is shown compatible with every resolution 
algorithm based on the backtracking + propagation scheme.  
Finally, we extend our method to complex symmetries, supported 
by groups of constrained variables. 

2 SYMMETRICAL CSPS 

Many constraint satisfaction problems are symmetrical, in the sense 
that several solutions are equivalent with respect to permutations of 
some of their elements.  Depending on what elements are 
permutable, different kinds of symmetries can be exhibited.  We 
review below two of them: symmetry on values and on variables. 

Symmetry on values occurs when several values in the domain of 
a given variable are interchangeable.  For instance, consider the 
formulation of the queen problem where each queen is a variable 
whose domain contains all the squares of the chessboard.  A 90-
degree rotation of the chessboard leaves the problem unchanged.  
This rotation corresponds to the systematic permutation of square 
(i,j) with square (j,i), which maps every solution onto another one.  
A survey of this kind of symmetry can be found in [11, 10]. 

Symmetry on variables corresponds to the situation where 
several variables play the same role.  In this case, permuting similar 
variables maps every solution onto another one.  A classical 
example is the pigeonhole problem, i.e. placing n pigeons in n-1 
holes, with the constraint that one hole accommodates at most one 
pigeon.  Consider the formulation of the problem with one variable 
for each pigeon, whose domain is the set of holes, and a single n-
ary difference constraint.  In the context of classical enumeration 
techniques, the complexity of this problem is in O(n!), and even 
small problem instances require a huge computation time.  Of 
course, a human would detect immediately that the problem has no 
solution, using some kind of commonsense knowledge: one cannot 
find an injection from a bigger set into a smaller set.  This kind of 
inference is, in general, out of reach for classical constraint solvers.  
In this problem, there is a symmetry on variables, since pigeons are 
indistinguishable.  This property can be used during the search to 
avoid repeatedly visiting “equivalent” parts of the search tree. 

Another example is the n-queen problem, in which permuting any 
two variables leaves the problem unchanged.  In this case, 
symmetry can be exploited to compute only a subset of the whole 
solution set.  Table 1 below illustrates the influence of a symmetry 
detection on these two problems: 

Table 1. Influence of the symmetry exploitation on the size of the search 
tree, on the number of solutions, and on the resolution time 

 
Problem 

No symmetry detection Symmetry detection 

 Tree size 
(solutions) 

CPU 
(sec) 

Tree size 
(solutions) 

CPU 
(sec) 

6 pigeons 119 (0) 0.213 15 (0) 0.042 

7 pigeons 719 (0) 1.031 31 (0) 0.064 

8 pigeons 5,039 (0) 7.619 63 (0) 0.102 
9 pigeons 40,319 (0) 61.902 127 (0) 0.228 

5 queens 3,263 (1200) 13 300 (10) 0.9 
 
Notice that the two types of symmetry are distinct.  For instance, 

in the queen problem, symmetry on values represents a geometrical 

property of the chessboard while symmetry on variables represents 
the fact that queens are indistinguishable.  The latter is independent 
of the topology of the chessboard. 

This paper addresses the problem of detecting and exploiting 
automatically symmetry holding on variables.  After a review of the 
main works in this area, we define a particular class of symmetry, 
based on a notion of permutability of variables, called intensional 
permutability. 

Intensional permutability is a relation between variables that is 
computed from properties of the constraints.  This property highly 
depends on the nature of the constraints of the problem, especially 
on their arity.  More precisely, we will show that the use of global 
(non-binary) constraints is a key to detecting symmetry on 
variables. 

We propose a simple scheme to exploit this symmetry, which can 
be implemented as a lightweight extension to most resolution 
algorithms.  This method proves efficient on a whole class of 
problems, such as classical layout problem or the pigeonhole 
problem, and it generates a negligible overhead.  Finally, we extend 
the method to symmetry involving composite structures. 

3 STATE OF THE ART 

The main result on symmetry on variables, presented by Puget [12], 
is outlined in this section. 

Definition 1  CSP.  Let E be a finite set.  A CSP P on E consists of 
the following elements: 

- A set V={v1, …, vn}; the vi are the variables of P 
- A mapping D :V → P(E); D(vi) is the domain of vi .  We call 

D the Cartesian product of the domains: D=D(v1)×…×D (vn) 
- A finite set C.  Elements of C are the constraints 
- A mapping r:C → P ( D ); ∀c∈ C; r(c) is the set of tuples 

satisfying c, and is called the extension of c 

In this definition, it is implicitly considered that every constraint 
involves all the variables of P.  In the rest of this paper, the 
expression “the variables of constraint c”  denotes the variables 
actually involved in the constraint. 

Definitions 2  Instantiation and solution.  An instantiation of the 
variables is any s∈ D.  A solution s of P is an instantiation such 
that s∈ r(c) for every c∈ C.  (i.e. s satisfies all the constraints)  
The solution set of P will be denoted by S(P) or simply S. 

Let ∏ be the permutation group of the finite set { 1,…,n} .  There 
is a canonical left-action of ∏ on the set D of the instantiations of 
the variables defined by: 

∀(σ,s) ∈ ∏ × D ; σ.s = (sσ(1) , sσ(2) , …, sσ(n)). 

Definition 3  Consistent permutation.  A consistent permutation is 
a permutation that maps any solution onto another one. 

The set of consistent permutations, equipped with the law coming 
from ∏ is a subgroup Γ of ∏.  By definition of Γ, S is stable for the 
action of Γ.  Thus, Γ defines an equivalence relation3 ≡ on the 
solutions set S.  When Σ = ∅, P is said to be symmetrical.  The 
goal is therefore to compute S/≡ instead of S, in order to avoid 
computing equivalent solutions. 

The central result of [12] is that, for any symmetrical CSP P, 
there exists a non-symmetrical CSP P’ , deduced by adding new 
constraints to P, whose solution set is S/≡.  However, deducing P’  
from P is expected to be as difficult as solving P.  This remark 
suggests that the notion of consistent permutation is too general. 

                                                               
3 When G acts on set E, the relation R defined by: ∀ (x,y) ∈ E × E ; x R y iff 
∃ g ∈ G such that g.x = y, is an equivalence relation 
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4 I NTENSIONAL PERMUTABI LITY 

In this section, we define a stronger, thus less general, notion of 
symmetry on variables: symmetry that can be deduced from 
intrinsic properties of constraints, instead of being computed from 
their extensions.  We do not regard the extension of a constraint as 
intrinsic since it depends on the domains of its variables. 

Intuitively, two variables of a CSP are intensionally permutable if 
they play the same role for every constraint of the problem. 

4.1 Preliminary Remarks 

In the original formalism of CSP [1] (see definition above), a 
constraint is defined by the set of its consistent tuples.  This is the 
extensional definition of the constraint. 

Constraints can also be defined intensionally, that is to say by a 
formula of satisfaction.  Remark that in the context of finite-domain 
constraint satisfaction, the two definitions are equivalent. 

The method we propose to detect symmetry on variables relies 
on two ideas.  The first idea is to exploit symmetrical properties of 
individual constraints to deduce symmetry of the whole CSP.  The 
second idea is that symmetrical properties of a constraint can be 
deduced directly from its intensional definition, without considering 
its extension. 

Let us illustrate these two ideas on the n-ary difference 
constraint.  This constraint states that n variables v1, v2, …, vn have 
different values.  In this constraint, all the variables play exactly the 
same role.  This is an intrinsic property of the constraint, which 
holds independently of any problem instance.  This property is 
called intensional permutability and is defined in Section 4.2. 

Remark that the general difference constraint was addressed by 
[13], who proposed a filtering method to enforce arc consistency in 
polynomial time.  In the case of the pigeonhole problem, this allows 
to prove that there is no solution in polynomial time.  It is important 
to note that our purpose and the one of Régin are complementary, 
and can be used simultaneously. 

Technically, such symmetry corresponds to a partition of the 
variable set into subsets of intensionally permutable variables.  
These subsets are called intensional permutability classes 
(IP-classes for short).  IP-classes represent to the idea that 
permutable variables will undergo the same events, i.e. the same 
domain reductions, during the resolution of the problem.  This is the 
case when the problem is solved using any enumeration algorithm 
based on the property of arc consistency.  Here are examples of 
IP-classes for standard constraints: 
• The n-ary difference constraint is symmetrical.  All the variables 
of the constraint are in a single IP-class. 
• Linear constraints are not symmetrical in general.  For instance, 
consider the following linear equality, involving coefficients: 

10=� ��
��α

 
There is one IP-Class for each different value of the αi  . 

• Comparison constraint, v > w, has two IP-classes: { v}  and { w} . 
In all cases, the constrained variables not involved in the 

constraint are in an additional IP-class. 
The IP-classes of all the constraints will be combined together to 

yield global IP-classes gathering permutable variables of the 
problem.  The combination consists in intersecting the IP-classes of 
all constraints.  Once computed, the IP-classes of the whole 
problem can be exploited “on the fly”  during the resolution to avoid 
useless exploration, as described in Section 5.3. 

We now formalize the notion of intensional permutability, and 
compare it with the theoretical consistency defined in Section 3. 

4.2 Definitions 

Each constraint of the problem can be seen as a sub-problem likely 
to be symmetrical.  The he following concept embodies this idea: 

Definition 4  Sub-CSP generated by a constraint.  Let c be a 
constraint in a problem P.  The sub-CSP of P generated by c, noted 
P(c), is the following CSP: P(c) = (V, D, {c}, r |{c}). 

We now define the notion of strongly permutability: 

Definitions 5  Strong permutability.  Two constrained variables, 
u and v, are said to be strongly permutable if, and only if, for every 
constraint c of P, the transposition τu,v is consistent for P(c).  If u 
and v are strongly permutable, the corresponding transposition, 
namely τu,v, is said, by extension, to be also strongly permutable. 

The group Σ generated by strongly permutable transpositions is a 
subgroup of Γ (defined in Section 3).  By definition, checking the 
strong permutability of two variables, say u and v, requires the 
study of the extensions of all the constraints involving u and v, 
which is an expensive process!  To avoid this process, we introduce 
the definition of intensional permutability, which is based on 
IP-classes, and compare it to strong permutability. 

Definition 6  Intensional permutability.  Two variables are said 
to be intensionally permutable if, for every constraint c, they are in 
the same IP-class for c.  The corresponding transposition, namely 
τu,v, is also said to be intensionally permutable. 

This relation can be computed a priori for each variable u, by 
simply intersecting the IP-classes containing u, for all the 
constraints of the problem.  However, the group Ψ generated by 
intensionally permutable transpositions of the variables does not act 
on S, because the domains are not taken into account.  As a 
counter-example, consider the CSP defined by u≠v, where 
D(u)={ 1, 2}  and D(v)={ 1, 2, 3} .  Although this constraint is 
symmetrical, the transposition τu,v maps solution (1, 3) onto (3, 1), 
which is not a solution (because 3 is not in the domain of u).  (τu,v is 
not consistent in the sense of Puget.)  Hence, Ψ does not act on S. 

Considering domains is therefore necessary to ensure the 
soundness of our method.  To do so it is enough to ensure that 
variables having different domains at the statement of the problem 
are not considered strongly permutable.  A simple solution consists 
in adding one global dummy constraint whose IP-classes are the 
sets of variables having the same domain. 

For instance, consider a CSP with three variables u, v and w 
whose domains are respectively { 0, 1} , { 0, 1}  and { 1, 2, 3} .  In 
this case, we add a constraint whose IP-classes are { u, v}  and { w} .  
Since the permutable variables will eventually be computed by 
intersecting all the IP-classes, u and w will not be permutable. 

Thanks to this additional constraint, Ψ now acts on S, thus 
inducing an equivalence relation ≈ on S.  Since computing S/≡ 
instead of S is out of reach, we will show ho to compute only S/≈.  
Moreover, since Ψ contains consistent transpositions, it is a 
subgroup of Σ, and therefore: Ψ ⊂ Σ ⊂ Γ ⊂ ∏.  In the next two 
sections, we show that in general, Σ ≠ Γ and that Ψ ≠ Σ. 

4.3 Strong Consistency vs. Consistency 

The following problem shows that consistency, in the sense of [12], 
does not always imply strong-consistency; i.e. there are cases 
where Σ ≠ Γ. 
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Consider the Ramsey problem (see 
Figure 1), i.e. coloring the edges of K4 
using at most two colors, in such a way 
that there is no monochrome triangle.  For 
that problem, Σ = ∅, because for any 
transposition p, one can find at least one 
solution s such that p.s is not solution.  
However, Γ is not empty since it 
permutation: (X→Y→Z→X; U→V→T→U). 

4.4 Intensional vs. Strong Per mutability 

There are cases when two variables are strongly permutable 
although they are not intensionally permutable.  Consider the 
cardinality constraint defined as follows: variable u represents the 
number of variables having value 1 in set { v} , with 
D(u)=D(v)={ 0,1} .  In this very particular case, u and v are strongly 
permutable for the constraint, since the following property holds:  

(u=0 � v=0) and (u=1 � v=1) 

This constraint is equivalent to an equality constraint, which is 
symmetrical, while it has been stated as a cardinality constraint, 
which is not, thus leaving the permutability between u and v 
undetected.  Therefore, Ψ ≠ Σ. 

Such a situation rarely occurs before the resolution.  However, 
during the resolution, such permutability relations can appear, when 
several variables have had their domains reduced.  Considering 
these situations would require the ability of dynamically 
reformulating constraints, which is beyond the scope of this paper. 

5 EXPLOI TING PERMUTABILI TY 

In this section, we present a method for exploiting permutability 
relations, both in order to compute fewer solutions (S/≈) and to 
speed up the search.  Our method is designed to fit in classical 
constraint satisfaction techniques, i.e. techniques based on arc 
consistency and backtracking. 

5.1 The Backtracking Procedure 

The most widely used resolution algorithms (e.g. forward checking, 
full look-ahead) are based on a basic backtracking scheme that can 
be abstractly described using the two following procedures: 

f or war d( )  
{  
 i f ( cr t Var  == ni l )  cr t Var  = new_var i abl e( ) ;  
 i f ( cr t Var  == ni l )  sol ut i on_f ound( ) ;  
 cr t Val  = new_val ue_f or ( cr t Var ) ;  
 pr opagat e_i nst ant i at i on ( cr t Var  ß  cr t Val ) ;  
 cr t Var  = ni l ;  

 i f ( f ai l ur e)  backt r ack( )  
 el se f or war d( )  
}  

 
backt r ack( )  
{  
 cr t Var  = ol d_var i abl e( ) ;  
 i f ( cr t Var  == ni l )  no_sol ut i on( ) ;  
 r emove_val ue_f r om_var ( cr t Val , cr t Var ) ;  

 f or war d( ) ;  
}  

These procedures consist in instantiating progressively the 
variables.  After each step, the current partial instantiation of the 
problem is checked against the constraints.  If a constraint is 
violated, the procedure backtracks to the last instantiation. 

5.2 Our Method 

The method presented in [12] for exploiting consistency relations 
consists in adding constraints to the problem.  This approach was 
also used for propositional satisfiability in [14].  As said in Section 
3, automating such a transformation is out of reach. 

Instead, we propose to modify directly the backtracking 
mechanism of the solver, by exploiting permutability relations after 
failures.  Indeed, any choice of value, say x, for a variable u that led 
to a failure, can be safely removed from the domains of all variables 
permutable with u, as soon as the failure is detected (see Figure 2). 
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Figure 2. The search tree of the 4-pigeonhole problem.  Dashed lines 
represent branches pruned by the method.  Area F (horizontal hatches) is 
the image of E (vertical hatches) by transposition τ1,2.  Therefore, once E 

has been explored, F can be safely pruned 

This domain reduction is safe by virtue of the definition of 
permutability.  This can be proven by refutation since permuting the 
values of u and v moves solutions from the left part of the search 
tree (area E) to the right part (area F), and vice versa.  Let s be such 
a solution, in which v = x (in the right part).  Solution s’ , obtained 
from s by permuting the values of u and v would be located in area 
E.  Since E contains no solution, this is a contradiction. 

5.3 I mplementation 

The implementation of our method is straightforward, and consists 
in inserting a domain reduction in the backtracking procedure: 

backt r ack( )  
{  
 cr t Var  = ol d_var i abl e( ) ;  
 i f ( cr t Var  == ni l )  no_sol ut i on( ) ;  
 r emove_val ue_f r om_var ( cr t Val , cr t Var ) ;  
 f or  ever y V per mut abl e wi t h cr t Var  do 
 {  
  i f ( not ( i nst ant i at ed( V) ) )  
   r emove_val ue_f r om_var ( cr t Val , V) ;  
 }  
 f or war d( ) ;  
}  

The bold text is the sole modification of the algorithm to ensure 
that each permutability class will be visited only once during the 
search.  This lightweight modification has no influence on the 
constraint propagation mechanism, or on the choice of the 
backtracking variable.  It is therefore compatible with every 
algorithm based on the “consistency + backtracking”  scheme (e.g. 
forward-checking, real full look-ahead and so forth, see [15]). 

� �
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Figure 1. The Ramsey 

problem for K4 
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To be complete, our implementation requires two additional 
computations, which can be made before the resolution: the 
management of domains, by creating additional IP-classes (see 
Section 4.2), and the computation of the intersections of all 
IP-classes. 

6 EVALUATION OF THE METHOD 

In this section, we present our results on classical problems, and we 
discuss the current limitations of the method.  The compromise 
obtained between the impact of the symmetry detection on the 
overall resolution and the overhead in efficiency and 
implementation is discussed in Section 8. 

6.1.1 Two L ittle “ Uniform”  Problems 

Using our method improves the resolution of the pigeonhole 
problem, since it detects right away that all the variables are 
permutable.  The complexity of the resolution (i.e. proving 
unsatisfiability), is O(2n) instead of O(n!).  More precisely, using 
our method, the number of branches of the search tree developed is 
2n-2, instead of (n-1)!  For n =13, 2n-2=2047, while (n-1)!=40320. 

As for the 8-queen problem, using the formulation given in 
Section 1, the number of solution is 1,200.  Using our method, only 
10 solutions are computed.  The size of the search tree passes from 
3,263 to 300 branches (see Table 1). 

6.1.2 A Mathematical Problem 

Consider the following problem involving five variables x, y, z, t, u 
and v whose domain is { 0, 1, …, 20} .  The constraints are the 
following three equalities: 

x + y + z + t  =  20 
x + y + z + u  =  20  
x + y + z + v  =  20 

and a difference constraint between the five variables.  
To prove the unsatisfiability of this problem, using a standard 

resolution scheme, 1,228 backtracks are required. 
The constraints representing the three equalities are obviously 

symmetrical.  If the difference constraint is represented by a set of 
ten binary difference constraints, after intersecting the IP-classes, 
no intensional permutability is detected. 

On the contrary, if the difference constraint is represented by a 
single global constraint, the three variables x, y and z are 
intensionally permutable.  In this case, the application of the method 
allows the unsatisfiability to be detected with only 199 backtracks.  
The resolution time decreases accordingly. 

6.1.3 A Classical Layout Problem 

A typical, and complex, symmetrical problem follows.  Consider 
the decision problem of placing several rectangular plates of various 
dimensions into a rectangle area (see Figure 3).  We assume that 
the plates and the rectangle area have integer height and width.  
Therefore, the problem can be stated as a finite-domain CSP.  We 
consider a definition where the position of each plate in the 
rectangle is represented by a constrained variable.  The domain of a 
variable is the set of possible positions for the corresponding plate.  
There is a single constraint, expressing that any two plates do not 
overlap.  This constraint is symmetrical and may be stated as such.  
The system will therefore consider as permutable all plates having 
the same domain, i.e. having same dimensions. 

 

 
 

Figure 3. Putting plates in a rectangle.  A solution is shown on the right.  
Permuting similar plates does not change the solution 

For example, consider the instance Data4 described page 272 of 
[16], and illustrated by Figure 3.  One has to place three 4×4 
plates, four 2×2 plates, two 3×1 plates and one 2×1 plate on a 
10×10 grid.  Plates having same color are obviously permutable. 

7 GENERALI ZATION OF THE METHOD 

In the past sections, we addressed symmetry occurring between 
single variables.  We now generalize the method to symmetry 
holding on groups of variables. 

When solving structured problems, classical enumeration 
algorithms are likely to apply repeatedly a same treatment to similar 
sub-problems.  The essential idea is that a treatment that failed for a 
given sub-problem should not be applied to similar sub-problems. 

Consider, for instance, the optimization problem corresponding 
to the preceding Layout Problem: placing the plates so that the 
height of the rectangle used is minimized.  To state the problem, 
one has to define a special variable representing the highest position 
reached.  The introduction of this variable changes the structure of 
the resulting CSP (see Figure 4), whose statement follows: 

Variables p1,…,pn (the plates), whose 
domain is the set of possible position for 
each plate.  Variables h1,…,hn.  hi 
represents the highest position reached 
by plate pi.  Variable H, which 
represents the global highest position 
reached. 

A non-overlapping constraint between 
the pi’s.  A constraint between H and the 
hi’s.  This constraint expresses that 
H = max(h1,…,hn).  n constraints linking 
each pi with each hi, expressing that 
hi = pi + yi, where yi is the height of 
plate pi. Figure 4 shows a graphical 
representation of the problem. 

The additional constraints break the relations of permutability 
since they are not symmetrical.  However, similar plates remain 
intuitively indistinguishable.  The inconsistency comes from the fact 
that now, the symmetry does not occur between the plate variables 
themselves, but between composite structures that are not explicitly 
represented as variables.  These structures consist of one plate 
variable and its corresponding height variable together with the 
binary constraint linking them.  In the next section, we extend our 
method for exploiting such higher-level symmetry. 

h1

p1

p2

p3

p4 h2

h3

h4

H

Non-symmetrical

Symmetrical

 
Figure 4. Graph of the 

optimization layout 
problem 
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7.1 Detecting Permutable Structures 

Let us define the notion of constrained structure as a weak form of 
sub-CSP.  A constrained structure C consists of a set of variables, 
denoted V(C), and a set of constraints (involving variables of V(C), 
denoted C(C).  Given a constrained structure C, the constraints in 
C(C) are said to be internal; other constraints are external. 

Given a CSP P, and a set of constrained structures of P, we build 
a condensed CSP P’  such that the permutable classes of P 
correspond to the permutable constrained variables of P’ .  The 
condensed CSP P’  is defined as follows: 
• The variables of P' are the constrained structures of P and the 
remaining constrained variables of P (i.e. variables that do not 
belong to any constrained structure); 
• The constraints of P' are constraints of P not internal to any 
constrained structure.  For the sake of uniformity, they are 
reformulated to hold on the constrained structures instead of the 
original variables. 

Two constrained structures C1 and C2 are isomorphic if the 
following one-to-one mappings do exist: 

Φ:V(C1) → V(C2) and Ψ:C(C1) → C(C2) 

such that for all c ∈C(C1) the following properties hold: 

(i) ∀ c ∈C (C1); Φ(V(c))=  Φ(V(Ψ(c))), 

(ii) ∀ c ∈C(C1); Ψ(c) ⇔ c ; (i.e. c and Ψ(c) are similar) 

(iii) ∀ v ∈V(C1); D(v) = D(Φ (v)). 

Two constrained structures of a CSP are permutable if 1) they 
are isomorphic and 2) the corresponding variables in the condensed 
CSP are permutable.  Hence, permutable constrained structures are 
detected by applying the method to the condensed CSP. 

For instance, in the plate problem, we can define constrained 
structures as the composition of one plate variable and its 
corresponding height variable together with the binary constraint 
linking them.  These constrained structures are clearly pair-wise 
isomorphic.  Moreover, the condensed CSP is symmetrical because 
the external constraints (non-overlapping and maximum height) are 
symmetrical for the constrained structures. 

When considering large problems, detecting isomorphic 
constrained structures “from scratch” might be a difficult issue.  
However, we claim that in practice, isomorphic constrained 
structures are explicit in the design of the problem.  This is the case, 
for instance, in the optimization layout problem above. 

Once permutable constrained structures have been identified, we 
have to modify the resolution algorithm to exploit them.  This is the 
purpose of the next section. 

7.2 Modifying the Resolution Method 

Permutable constrained structures are linked by an isomorphism 
defining a one-to-one mapping between their respective variables.  
The problem is that a variable and its image by the mapping are not 
actually permutable since constrained structures can be partially 
instantiated during the resolution. 

Therefore, to prevent the method from omitting solutions, after a 
backtracking, the domain reduction will be propagated only to those 
variables that belong to constrained structures that have not yet 
been partially instantiated. 

backt r ack( )  
{  
 cr t Var  = ol d_var i abl e( ) ;  
 i f ( cr t Var  == ni l )  no_sol ut i on( ) ;  
 r emove_val ue_f r om_var ( cr t Val , cr t Var ) ;   
 f or  ever y V per mut abl e wi t h cr t Var  do 
 {  
  i f ( not ( i nst ant i at ed( V) ) )  
  {  

   if(V belong a non instantiated 
    constrained structure) 
   { 
    remove_value_from_var(cr tVal,V); 
   } 
  } 
 }  
 f or war d( ) ;  
}  

The correctness of this method is not reported here, for reasons 
of space limitations.  We tested it on a set of instances of the layout 
problem [16], results are reported in Table 2.  The solution reported 
here to exploit symmetry can be compared with the method 
proposed in [16], which requires a radically new design of the 
problem. 

8 EFFICI ENCY 

Table 2 shows results on optimization layout problems solved with 
the BackTalk system [17, 18]. 

Table 2. CPU times for solving the optimization layout problem with 
and without the method.  Solved instances are described in [16] 

Instance CPU not processed CPU processed 
Data #4 0.016 sec. 0.01 sec. 
Data #5 67.846 sec. 3.039 sec. 
Data #6 12.915 sec. 0.917 sec. 
Data #9 0.807 sec. 0.44 sec. 

 
The cost of the method has two components.  First, the method 

requires the suppression of useless values after each backtracking.  
The cost for these suppressions is very low and is systematically 
compensated by the pruning effect gained.  Second, the method 
requires the computation of the IP-classes.  As written in Section 
4.1, computing IP-classes consists in intersecting sets of variables, 
which can be done in polynomial time.  Moreover, this process can 
be achieved a priori, i.e. at problem statement. 

However, the method is limited to symmetry between pairs of 
permutable variables.  As illustrated in Section 4.3, symmetries that 
are more complex are not addressed by the method.  Detecting and 
exploiting efficiently such symmetry is a complex issue that would 
require a radically different approach. 

 
9 CONCLUSI ON 

We presented a method for detecting and exploiting a particular 
class of symmetry occurring in constraint satisfaction problems.  
Although it does not take into account all symmetry on variables, it 
drastically speeds up the resolution of non-trivial symmetrical 
problems. 

The method exploits intrinsic symmetrical properties of 
individual constraints to decompose the set of variables into several 
subsets of permutable variables. 
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The method depends on the design of the problem, especially on 
the kind of constraints defined.  More precisely, binary constraints 
break the symmetry of the problem because they decompose the 
problem into clusters containing at most two variables.  Therefore, 
representing global constraints as such, instead of representing them 
by sets of binary constraints, is critical to ensure the success of the 
method. 

The method is sound and complete, because all the permutability 
classes are visited at least once, and the entire solution set can be 
reconstituted from the permutability relations.  Moreover, it allows 
a fast computation and a straightforward implementation, 
compatible with every enumeration algorithm based on arc 
consistency. 

This method allows to get rid, in some sense, of highly 
symmetrical problems such as the pigeonholes, but is also proved 
useful on non-toy problems such as layout cutting.  A finer 
evaluation of the frequency of real world problems yielding non-
empty intensional permutability relations is under study. 

We finally introduced an extension of the method to a broader 
spectrum of symmetry occurring between implicit structures of 
variables, which often occurs in structured problems. 
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