
Mixing Constraints and Objects: a Case Study in Automatic Harmonization

François Pachet & Pierre Roy
LAFORIA-IBP, Université Paris 6, 4, Place Jussieu, 75252 Paris Cedex 05, France

e-mail: pachet/roy@laforia.ibp.fr
www: http://www-laforia.ibp.fr/~fdp

Abstract

We propose an extension of Smalltalk with
f ini te-domain constraint sat isfact ion
mechanisms. Our system, called BackTalk,
allows the definition of constraints over
arbitrary Smalltalk objects, and implements
efficient algorithms for constraints satisfaction.
We exemplify the use of BackTalk on a
problem known to be complex, automatic
harmonization. We outline several previous
attempts to solve the problem with similar
mechanisms, and stress on their inefficiencies,
mainly the lack of structure of domain objects.
We propose to solve the problem by a
combination of constraints and objects that
fully benefits from object structures. This is
achieved in practice by separating the
constraint satisfaction process in two steps. By
comparison, our system yields excellent results,
both in term of efficiency and readability. We
discuss the generality of our approach to
problems involving numerous and
heterogeneous object structures.

Key-words: constraints, finite-domain
constraint satisfaction, embedded constraint
systems, automatic harmonization.

1. Yet an other object + constraint
system ?

We are interested in building large
knowledge-based systems by combining
traditional and sound artificial intelligence
techniques with object-oriented technology.
Our previous work on NéOpus [Pachet 95], an
extension of Smalltalk to first-order production
rules, provided us with valuable experience on
the building of such large hybrid systems
integrating different, if not orthogonal
mechanisms. The key goal of our work is to be
able to reuse as much as possible exist ing
software rather than rewriting everything from
scratch. This paper is a report on a successful
experiment in building a constraint satisfaction
mechanism embedded in Smalltalk, with an
application on a complex problem.

Since the seminal works of Borning on
integrating constraints with objects, (embodied
in the ThingLab system [Borning 81]), many
ideas have been proposed to enforce a
smoother integration of constraints mechanisms
within object-oriented programming languages.
This evolution of ideas has materialized for
instance in the kaleidoscope system [Freeman-
Benson & all 90] and its various extensions
[Lopez & al 94]. Kaleidoscope integrates
several mechanisms for constraint satisfaction
including local propagation and simplex for
real numbers, and finite-domain solver for
booleans. As [Freeman-Benson & Borning 92]
recall, most of the early constraint-based
systems were based on a perturbation model of
constraints. In this model, constraints are used
to restore the state of a system after an external
perturbation (such as a user interaction). Most
of the mechanisms used to enforce this model
are based on local propagation techniques.
Interest has now shifted to the so-called
refinement model in which the set of possible
values of variables is progressively refined
through the execution of the program, but
never altered by outside events. This motivated
our interest in embedding f in i t e -domain
constraints satisfaction mechanisms with
objects.

An interesting approach is the LAURE
system [Cazeau 94], which proposes a very
efficient implementation of constraint-
satisfaction mechanisms embedded with
objects. However, LAURE includes a particular
object model (called an ob jec t -or i en ted
knowledge representation language), which,
although interesting in many points, is not
usable in our context, since we want to reuse
existing object-oriented programs. Among the
constraint-solvers built as extensions of existing
object-oriented languages, our approach is to
be compared to systems such as COOL
[Avesani & al 90], which integrates a finite-
domain solver to the KEE programming
environment. KEE objects, however, are closer
to frames than to objects in the sense of object-
oriented programming. Similarly, the Prose
system [Berlandier & Moisan 88], integrates
f ini te-domain constraint sat isfact ion
mechanisms on top of Smeci, an object-
oriented extension to the Le_Lisp language.
The system presented here bears a lot of
resemblance in principle to the Prose system,
and owes much to the work of Berlandier on
algorithms for finite-domain constraint
satisfaction [Berlandier 94]. On the commercial

scene, the system IlogSolver also proposes
finite-domain mechanisms embedded in C++
[Puget 92]. IlogSolver uses proprietary
algorithms clearly aimed at efficiency, while
providing many hooks for inserting user-
specific procedures. IlogSolver as a library has
much of the desired features for smooth
embeddability, except its lack of a powerful
interface and programming environment. As
far as Smalltalk is concerned, no finite-domain
solver has, to our knowledge, yet been
developed.

Our contribution in the field is two-fold:
First we propose a finite-domain solver
smoothly integrated in the Smalltalk language.
This allows to apply constraint mechanisms to
arbitrary Smalltalk programs. Second, we
report on an application of our system on a
problem known to be complex: four-voice
automatic harmonization. We show that the
integration of objects with finite-domain
constraints is not so natural as it first seems, and
that, in a way, constraints may be
"incompatible" with the object structures of the
original program. We propose a practical
solution to effectively achieve integration while
preserving the object structures of the original
program.

The paper is organized as follows. In
the first part, we briefly describe the kernel of
our integrated finite-domain solver (BackTalk,
for Backtracking in Smalltalk). In the second
part we introduce the (hard) problem of
automatic harmonization, and show the results
of preceding attempts to solve it with
constraint-based systems. Note that this article
does not require any knowledge of harmony or
music whatsoever to be understood. In the third
part, we introduce the object-oriented system
we reused (the MusES system), and propose a
solution to solve the harmonization problem
with MusES and BackTalk. We discuss our
result, and particularly the generalization of our
technique to complex objects + constraint
problems involving many different object
structures.

2. Overview of BackTalk

BackTalk stands for "Backtracking in
Smalltalk". The aim of this system is to provide
a set of classes to state and solve constraints on
arbitrary Smalltalk objects. This work follows
the same spirit as previous backtracking
extensions to Smalltalk such as [Lalonde &
Van Gulik 89], [Lalonde 87], in that it does not
require any kernel support, and constraints may
be expressed on arbitrary Smalltalk objects.
The system is entirely written in Smalltalk.
Considerations on efficiency may be found in
2.3.

2.1. Definition of a CSP

A CSP (Constraint Satisfaction Problem) is a
problem defined by 1) a set of variables taking
their value in a finite set of values (the domain),
and 2) a set of constraints on these variables. A
solution of a CSP is an instanciation of the
variables that satisfies all the constraints.
Solving a CSP consists in finding a solution, or
all its solutions. i.e. assignments of values to
variables that satisfy all the constraints. The
standard algorithm to solve a CSP is
backtracking. Backtracking instanciates
progressively the variables, and after each
instanciation, checks the partial solution against
all the instanciated constraints. This algorithm
is, of course, very inefficient on average.

The inherent inefficiencies of
backtracking have led to the development of
techniques to reduce its complexity. The most
widely used technique to reduce this
complexity is arc-consistency. It consists in
reducing the domains of the variables before or
during the actual enumeration, by considering
each constraint individually. The first arc
consistency algorithm was Waltz's filtering
algorithm [Waltz 72]. Mackworth improved it
with AC-3 [Mackworth 77]. Mohr &
Henderson found AC-4 [Mohr & Henderson
86], an optimal algorithm. Unfortunately AC-4
is slower than AC-3 on a lot of CSPs, because is
requires too complex data structures. The most
recent algorithm is AC-5 [Deville &
Hentenryck 91], which is better than AC-4 on
specific CSPs, but not on average cases. Arc
consistency may be applied before the actual
backtracking, as well as d u r i n g the
enumeration. In this latter case, each
instanciation is followed by a more or less
complete arc-consistency process. The first one
in this family of algorithms (called tree search
algorithms) is Forward-Checking [Nadel 88].
In forward-checking the consistency process is
limited to the constraints involving the
currently instanciated variable. In so-called
look ahead strategies, the consistency process
checks all the constraints [Nadel 88].

In BackTalk, we use a generalization of AC-
3 to n-ary and functional constraints
[Berlandier 92] for arc-consistency.
Enumeration of solutions is implemented by
forward-checking. Extensions to AC-4 and AC-
5, as well as look-ahead strategies will be
eventually considered. However, after several
experiments of BackTalk on classical problems,
we were not convinced of the urgency of
implementing much more sophisticated
algorithms.

2.2. Implementation of BackTalk

BackTalk is a simple system, with
straightforward representations of variables and
constraints. BackTalk introduces one class for

defining variables, and several classes to define
constraints. Each constraint class represents a
particular type of constraint, with redefined
methods for improving efficiency, as well as for
deducing variables when it is possible. For
example, class Constraint defines general
n-ary methods for filtering variable domains.
In the case of BinaryConstraint , this
procedure is redefined to implement the more
efficient procedure "revise" of [Mackworth 77].
BackTalk includes a library of constraint
classes including constraints for most common
arithmetic computations (Cf. Fig. 1).

Object ()
"general constraint (abstract class)"

Constraint ('attributes' 'arity')
"X1+...+Xn=Y"

AdditiveConstraint ('orderedAttributes')
BinaryConstraint ('left' 'right')

"X <> Y"
BinaryDifferentConstraint ()

"X = Y"
BinaryEgalityConstraint ()

"X > Y"
BinarySuperiorConstraint ()

BinarySuperiorOrEqualConstraint ()
...

BlockConstraint
('relationBlock' 'orderedAttributes')

TernaryConstraint ('first' 'second' 'third')
TernaryAdditiveConstraint ()
TernaryEgalityConstraint ()
...

UnaryConstraint ()
Figure 1. A part of the hierarchy of constraint

classes in BackTalk.

Class BlockConstraint is used to
specify arbitrary constraints, whose test is
represented by a Smalltalk block. The only
requirement is that the block yields a Boolean
result. Testing the constraint is done by
evaluating the block on his arguments.

The user may either use a predefined class of
constraint among the classes of the library, or
define a new one. This new constraint must be a
subclass of Constraint , and only one
method has to be redefined to make it a
concrete class. This method represents the
actual test of the constraint, when all the
variables are instanciated. In the case the new
constraint class represents a functional
constraint, a second method must be defined,
that computes the deduced variable from the
value of the other variables. This method is
used to compute infinite domains when needed.

2.3. Example

Here is a simple example of a CSP, that gives
an idea of the look and feel of BackTalk, with
the n-queens problem (Cf. Fig. 2). We define n
variables whose domain is the list of all possible

n2 squares on the chessboard. The squares are
represented by instances of class Square, who
understand message attacks: . We define
n(n+1)/2 constraints between each pair of
variables, to represent all the constraints
between the queens. No arc-consistency here is
needed since the problem is by definition
already arc-consistent. The result of the
enumeration is a dictionary which associates a
value to each variable. Methods allows more
sophisticated exploitations of the results, such
as allSolutionsDo:, which successively
applies a block to each solution. Of course, the
n-queen problem may be solved a lot faster ,
e.g. by imposing the row of queens, but what
we want to show here is that the domain of
variables may be a list of arbitrary Smalltalk
objects, here instances of class Square.

| p queens d|
p := CSP new. "The CSP"
queens := (1 to: n) collect: [:i |

"The n variables"
d := OrderedCollection new.
1 to: n do: [:i | 1 to: n do:

[:j | d add: (Square newAt: (i @ j))]].
"The domain"

Variable new domain: d].

1 to: n - 1 do: [:i | i + 1 to: n do: [:j |
p addConstraint:

(BlockConstraint new
"The constraints"

variables: (Array with: (queens at: i)
with: (queens at: j))

relationBlock: [:a :b | (a attacks: b)
not])]].

"the first solution"
p firstSolution -> aDictionary
"all solutions"
p solutionsDo: [:d| p printSolution: d]
Figure 2. The n-queens problem in BackTalk.

2.4. Efficiency

Efficiency was not our primary concern in
building BackTalk, but we ended up with
decent results for a language not known to be
the most efficient (Cf. Fig. 3). Of course,
compared to extremely efficient object +
constraint solvers such as LAURE [Cazeau 94]
for instance, our results are poor. However, as
we will see on the problem example, we think
that the main gain in efficiency is not to be
found in the implementation of general-
purpose algorithms. To quote Freeman-Benson
and Borning [Freeman-Benson & Borning 92],

we think that "Providing a general solver for
arbitrary constraints over arbitrary domains is a
completely unreasonable goal". This remark
led us to search for better ways of organizing
constraints and objects that are constrained,
rather than in algorithm optimizations. As we
will see, the results obtained by our system on
the harmonization problem are an order of
magnitude better than similar approaches using
more sophisticated solver engines, which makes
the BackTalk system, although not optimized, a
fast enough engine for our experiments.

Problem Nb. of
variables

Nb. of
constraints

Time
(Sparc 10)

send+
more =
money

11 35 5 s.

n-queens
 n = 8
 n = 100

n
8

100

n.(n+1)/2
36

5050
300 ms.

40 s.

Figure 3. Some results of BackTalk on classical
problems.

3. The musical problem

Music analysis and generation has long been
a favorite domain for researchers in Artificial
Intelligence. Within AI, Object-Oriented
Programming has traditionally been a favorite
paradigm to build complex musical systems,
especially systems oriented towards synthesis
(from the Formes system [Cointe & Rodet
1991] to the MODE system [Pope 1991], the
Kyma system [Scaletti & Johnson 88]), and
ImprovisationBuilder [Walker and al., 1992]) to
name but a few. The "Automatic
Harmonization Problem" (hereafter referred to
as AHP) is particularly representative of the
field. It consists in finding harmonizations of a
given melody (such as the melody in Figure 4),
or, more generally, an incomplete musical
material, that satisfies the rules of harmony
(and counterpoint, if rhythm is taken into
account). The standard AHP is to harmonize
four voices (see Fig. 5 for a possible solution).

The constraints needed to solve the AHP are
consensual, and can be found in any decent
treatise on harmony, such as [Bitsch 57]. The
problem is interesting as a benchmark because
it involves a lots of complex object structures
(notes, intervals between notes, chords, intervals
between chords, scales, etc.). Moreover, there
are various types of constraints which interact
intimately: 1) horizontal constraints on
successive notes of a melody (such as: "two
successive notes should make an interval of a
seventh" or leading note rises to the tonic")), 2)
vertical constraints on the notes making up a
chord (such as "no interval of augmented
fourth, except on the fifth degree", or "voices
do not cross"), and 3) constraints on sequences

of chords (such as, "two successive chords
should not have the same degree").

Figure 4. An initial melody to harmonize (a
part of the French national anthem, 18 notes).

3.1. Harmonization as a constraint
satisfaction problem

Harmonization of a given melody naturally
involves the use of constraints, because of the
way the rules of harmony are stated in the
textbooks. Indeed, several systems have
proposed various approaches to solve the AHP
using constraints. The pioneer was Ebcioglu
[Ebcioglu 92], who designed a specific
constraint logic programming language (BSL)
to solve this specific problem. His system not
only harmonizes melodies (in the style of J.-S.
Bach), but is also able to generate new chorales
from scratch. Although interesting, the
architecture is difficult to transpose in our
context because, constraints are used passively,
to reject solutions produced by production
rules. Ebcioglu also uses real intelligent
back track ing , which is not always more
efficient than forward checking algorithms, but
a lot more complex to maintain.

Figure 5. A solution proposed by BackTalk
from the initial melody of Figure 4.

More recently, Tsang proposed to solve the
AHP using CLP, a constraint extension to
Prolog [Jaffard & Lassez 87]. The results of
Tsang were unrealistic : 5 minutes and 70 Megs
of RAM were needed to solve the AHP on an
11-note melody (see Figure 7), making his
approach not very encouraging. Ovans [Ovans
92] was the first to introduce the idea of using
arc-consistency techniques and CSP to solve the
harmonization problem, but his system was
very poorly structured, as all the musical
concepts had to be represented as number
variables, thereby imposing an unnatural bias
on the representation of the musical entities.

The system proposed by Ballesta [Ballesta
94] is much more promising. Ballesta uses
Pecos (an earlier version of IlogSolver) to solve
the AHP. He uses both object structures and

finite-domain constraints. The results of
Ballesta are listed in Figure 7. The main
drawback of this work (in our context) is that
Ballesta's system is too radical: everything is
stated in terms of constraints, and objects are
defined only as structures, designed merely to
support the constraints. More precisely, objects
are defined by a set of attributes, but all the
relations between the attributes are stated in
terms of constraints. For instance, to represent
one interval instance, 12 attributes are defined,
such as the n a m e of the interval (e.g.
diminished fourth), its type (e.g. fourth), its two
extremities, represented as instances of class
Note, etc. Nine constraints are then introduced
to state the relations that hold between the
various attributes of class Interval . For
instance, a constraint links the name of the
interval to the various attributes of its
extremities (the octave and name of the note).
As a result, his representation is indeed very
rich, since any request can be made on any
partially instanciated interval. For instance, the
user can ask for the set of notes yielding an
interval of a fourth with a given note, etc. The
same scheme is applied to all the entities of the
domain: notes, intervals, scales and chords. One
note instance is represented by 6 constrained
variables, one interval by 9 constrained
variables, and so forth. To solve the AHP on a
n-note melody, Ballesta uses (126*n - 28)
constrained variables. The total amount of
constraints is therefore very high, while the total
number of methods is very low.

3.2. Critics of preceding approaches

As Figure 7 shows, the approaches which
have been proposed using constraints yield
poor results in terms of performance. There
are, from our point of view, two lessons to learn
from these experiments:

1- There are too many constraints. The
approaches proposed so far do not structure the
representation of the domain objects (notes,
intervals, chords). When such a structuration is
proposed (as in Ballesta's system) objects are
treated as passive structures.
2- The constraints are treated uniformly, at the
same level. This does not reflects the reality : a
musician reasons at various levels of
abstraction, working first at the note level, and
then on the chords. The most important
harmonic decisions are actually made at the
chord level. This separation could be taken into
account to reduce the complexity.

These remarks led us to reconsider the AHP
problem, with a reverse viewpoint from our
predecessors. Rather than "starting from the
constraints", and devising object structures that
fit well with the constraints, we "start from the
objects", and fit the constraints and the

constraint satisfaction mechanism to them.
Indeed, a lot of properties of the domain
objects may be more naturally described as
methods instead of constraints. To do so, we
propose to reuse a fully-fledged object-
oriented program, the MusES system, which
contains a set of classes that represent the basic
elements of harmony, such as notes, intervals,
scales and chords. We start from MusES and
add constraints on top of it to represent the
rules of harmony. Not only the resulting
system will be faster (because methods are
faster than constraints), but we claim that it also
will be more intelligible.

4. The MusES system

The MusES system is a project to represent
consensual knowledge about basic harmony in
Smalltalk [Pachet 94]. From the musical point
of view, the aim of MusES is to study the
adequacy of various representation techniques
to capture the essence of musical structures,
starting from the most simples ones (notes,
enharmonic spelling, intervals, scales, and so
forth) to the most sophisticated ones (analysis,
tonalities, support for improvisation, etc.). From
the technical point of view - the one we follow
here - MusES can be seen a big repository of
consensual knowledge about harmony. One of
the goal of MusES is to study how complex
object-oriented programs may be extended
with AI techniques, for effective reuse. To
understand this point, we must say a little bit
more about MusES.

MusES is entirely written in Smalltalk, using
only the basic mechanisms of Object-Oriented
Programming (instanciation, encapsulation,
message passing and polymorphism,
metaclasses). The example of the notion of
interval is typical. The MusES approach is
based on the remark that only three types of
operations are important with intervals: (1)
computing an interval given 2 notes, (2)
computing the top note given the bottom one,
and 3) computing the bottom one given the top
one. Several other less important operations are
also considered (like adding two intervals).
MusES contains specific methods to compute
intervals given two notes, or notes given an
interval, such as the following:

(1)
PitchClass C intervalWith: PitchClass F sharp

 -> an augmented fourth
(2) Interval diminishedFifth topIfBottomIs:
PitchClass G -> C#

 MusES also includes a representation of
scales as classes in the same spirit (ex. (3).
These scales can generate so-called scale-tone
chords , which are at the root of harmonic

analysis (example (4)), and conversely, MusES
can compute the list of plausible tonalities for a
given chord (example (5)):

(3) PitchClass C harmonicMinor notes ->
#(C D Eb F G Ab B)

(4) P i t c h C l a s s C h a r m o n i c M i n o r
scaleToneChordsPoly: 4 - >
([C min maj7] [D halfDim] [Eb aug5 maj7] [F
min 7] [G 7] [Ab maj7] [B dim7]))

(5) C h o r d f r o m S t r i n g : ' C m i n '
allPossibleTonalities - >
AnalysisList ({II of Bb MajorScale}
{II of Ab MajorScale} {VI of Eb MajorScale}
{I of C HarmonicMinorScale}
{IV of G HarmonicMinorScale}
{I of C MelodicMinorScale}
{II of Bb MelodicMinorScale}))

MusES also contains a representation of
temporal objects (notes in a melody), and more
abstract structures, such as melodies. A set of
editors are included in MusES to define and
edit melodies graphically. MusES contains
around 50 classes. All these operations are
r e p r e s e n t e d u s i n g o b j e c t - o r i e n t e d
programming (usually methods in the
associated classes). Of course, this approach is
less general than the one using purely
constraints. Our approach is indeed much
different: instead of proposing a general
framework in which relations are stated and
arbitrary computations are at the user's hand,
we impose a fixed set of "essential"
computations which are fast, while being easy
to understand and modify.

Several extensions are currently developed to
MusES to test various ideas in musical
representation. The first one is a system that
performs automatic analysis of Jazz chord
sequences [Pachet 91]. This systems studies the
integration of first-order rules in Smalltalk, and
proposes a model that captures the human
reasoning process involved [Pachet 94b].
Another one is a model for musical memory,
aimed at producing an automatic improviser
[Ramalho & Ganascia 94].

5. BackTalk and MusES: stating
constraints on objects that do not exist
yet

Given MusES, the main problem we face in
writing the constraints that represent the rules
of harmony, is that there are constraints that
should be stated on objects that do not exist
yet! Typically, chords - the most abstract
objects of all - do not exist yet at the beginning

of the problem solving. Their existence is
dependent on the existence of the notes of
intermediary voices, which are themselves
computed by constraints. We cannot simply
write all the constraints and launch BackTalk
on them, since the domains of the chords are
empty. The solution we propose consists in
separating the problem solving in two phases
(Cf. Fig. 6):

1) Management of the constraints at the
note level only.
Input of the n-note melody.
Creation of a CSP with only constraints on
notes.
Arc-consistency is applied to reduce the
domains of the note variables.

2) Management of the constraints at the
chord level.
Computation of the concrete instances
representing all the possible chords under
each note. This corresponds to computing
the infinite domains of the chords variable.
Creation of a second CSP including
constraints on notes, and constraints on
chords (which exist now), as well as
constraints on notes and chords. Arc-
consistence is applied, followed by the
enumeration of solutions with forward-
checking.

In this scheme, given a n-note melody, the
total CSP contains (4*n) variables for the notes
plus n variables for the chords, which are
handled in the second phase. The results are
given in Figure 7. As we can see, we are an
order of magnitude faster than previous
approaches. The memory needed is not
significant.

1

2

• Input n-note melody
• Build CSP with constraints on notes (4n variables)
• Arc-consistency
• Computation of chord domains

• Creation of second CSP with n constrained variables
(chords) and the preceding 4.n variables (notes)
• Arc-consistency
• Enumeration by forward-checking

Figure 6. Diagram of the architecture.

6. Results

11 notes 12 notes 16 notes
Tsan&Aiken
(CLP)

5 m.
 (Sparc 1)
70Mg ram

? ?

Ballesta
(Pecos)

3 m. 4 m.

BackTalk +
MusES

20 sec. 20 sec. 40 sec.

Figure 7. Comparative results of
BackTalk+MusES.

7. Discussion, conclusion

We introduced BackTalk, a finite-domain
constraint solver in Smalltalk, having decent but
not extraordinary performances. The
performance of the BackTalk kernel have been
showed to be sufficient for our purposes on a
problem known to be complex. The relative
loss in efficiency, compared to more efficient
implementations, is in our view, largely
compensated by the possibility of building very
easily editors for the constraints (not described
here for reasons of space), and by allowing the
dynamic modification of the CSP. Future works
on the kernel include adding mechanisms to
handle constraints hierarchies, [Borning & al.
87], [Berlandier 94].

We solved the automatic harmonization
problem by reusing an existing system, and
adding a set of constraints of top of it. By
reusing the existing object structures, we were
able to reduce drastically the number of
constrained variables, and thus to get results
one order of magnitude better that previous
approaches on the same problem. The resulting
system is not only faster than the other
proposed solutions, it is also much simpler (less
constraints). Compared to other approaches
using constraints, we achieve better results by
finding a compromise between two extremes
(Cf. Fig. 8): 1) rich objet structures, with no
flexibility (the MusES system), and 2) lots of
flexibility, but no structure (The Tsang &
Aitken system).

This experiment shows that the combination
of objects with finite-domain constraints may
increase drastically the performance, if the
architecture is able to take into account objects
structures adequately. In particular, our good
results are obtained because, in a way, some
constraints are "compiled" into methods of
corresponding classes. This compilation forces
the problem solving process to be cut into two
phases. This separation in two phases is to be
seen as a representation of a particular kind of
knowledge about the types of objects. More
generally, we replace "inter-object" constraints
(for instance constraints defining chord
structures or intervals), by exploiting rich

object structures (here, essentially the chords),
represented as "ghost" objects from the point of
view of the constraint mechanism.

o
b

j
e
c

t
s

constraints

MusES

BackTalk+MusES

Ballesta 94

Tsang&Aiken 91

Figure 8. Position of BackTalk+MusES among
other approaches.

This successful experiment is now followed
by more formal research to find properties that
could help automatically detect cases when the
separation of the problem solving in distinct
phases could help reducing the complexity of
large constraint+object systems. Our hypothesis
is that this separation may be particularly useful
when several ontologically distinct categories of
objects are being handled simultaneously.
More precisely, we think that such situations
should arise when the domain objects contain
individuals (analogous to notes), groups of
individuals (analogous to chords), groups of
groups of individuals (analogous to musical
phrases), etc. Experimentation on large
configuration problem for instance, should
prove interesting to test the validity of these
ideas.

References

Avesani, P. Perini, A. Ricci, F. (1990) COOL:
An Object System with Constraints.
TOOLS'2, June 1990.

Ballesta, P. (1994) Contraintes et objets : clefs
de voûte d'un outil d'aide à la
composition ? Ph.D. Thesis, INRIA,
Sophia Antipolis, November 1994.

Berlandier, P. (1992) Etude de mécanismes
d'interprétation de contraintes et de leur
intégration dans un système à base de
connaissances. Ph.D. Thesis, INRIA,
1992.

Bitsch, M. (1957) Précis d'Harmonie tonale.
Ed. Alphonse Leduc.

Borning, Alan, H. (1981) The programming
language aspects of ThingLab, a
constraint oriented simulation laboratory.
ACM transaction on Programming
Languages and Systems, 3 (4) pp. 353-
387, October 1981.

Borning, A. Duisberg, R. Freeman-Benson, B.
Kramer, A. Woolf, M. (1987) Constraint
hierarchies. OOPSLA '87, pp. 48-60.
(1987).

Cazeau, Y. (1994) Constraint Satisfaction with
an Object -Oriented Knowledge
Representation Language. Journal of
Applied Artificial Intelligence, 4, pp. 157-
184.

Cointe, P. Rodet, X. (1991) Formes:
Composition and Scheduling of Process.
In The Well-Tempered Object: Musical
Applications of Object-Oriented Software
Technology , S. T. Pope, ed. MIT Press.

Deville, Y. Van Hentenryck, P. (1991) An
efficient arc-consistency algorithm for a
class of CSP problems. Proceedings of
IJCAI '91, pp. 325-330.

Ebcioglu, K. (1992) An Expert System for
Harmonizing Chorales in the Style of J.-
S. Bach, In M. Balaban, K. Ebcioglu &
O. Laske (Ed.), Understanding Music
with AI: Perspectives on Music Cognition,
The AAAI Press, California.

Freeman-Benson, B. Kaleidoscope: mixing
objects, Constraints, and Imperative
Programming . Proceed ings o f
ECOOP/OOPSLA 90, pp. 77-88.

Freeman-Benson, B. Borning, A. (1992)
Integrating constraints with an object-
oriented Language. Proceedings of
ECOOP '92, pp. 268-286.

Fron, A. (1994) Programmation par
contraintes. Addison-Wesley, 1994.

Jaffard, J. Lassez, J.-L. (1987). Constraint logic
programming. 14th POPL, Munich,
1987.

Lalonde, W. Van Gulik, M. (1988). Building a
backtracking facility for Smalltalk
without kernel support. Proceedings of
OOPSLA '88, pp. 105-123.

Lalonde, W. (1987) A novel rule based
mechanism in Smalltalk. ECOOP '87.

Lopez, G. Freeman-Benson, B. Borning, A.
(1994). Constraints and Object Identity.
Proceedings of ECOOP '94, pp. 260-279.

Mackworth, A. (1977). Consistency on
networks of relations. A r t i f i c i a l
Intelligence, (8) pp. 99-118, 1877.

Nadel, B. (1988) Tree search and arc-
consistency in constraint satisfaction
algorithms. Search in Artificial
Intelligence, Springer-Verlag, pp. 287-
340, 1988.

Nudel, B. (1983) Consistent labeling problems
and their algorithms: expected
complexity and theory-based heuristics.
Artificial Intelligence, vol. 21, n. 1 & 2,
pp. 135-178, 1983.

Mohr, R. Henderson, T. C. (1986). Arc and
path-consistency revisited. Artificial
Intelligence, vol. 28, n. 2, pp. 225-233,
1986.

Ovans, R. (1992) An Interactive Constraint-
Based Expert Assistant for Music
Composition. Proc. of the Ninth
Canadian Conference on Artificial
Intelligence, University of British
Columbia, Vancouver, 1992.

Pachet, F. (1991) A meta-level architecture for
analyzing jazz chord sequences.
International Conference on Computer
Music, pp. 266-269, Montreal, Canada.

Pachet, F. (1994) An object-oriented
representation of pitch-classes, intervals,
scales and chords. J o u r n é e s
d'informatique Musicale, Bordeaux,
march 1994.

Pachet, F. (1994b) A Refined Framework for
Representing Knowledge Based on
Simulation. Colloque Langages et
modèles à objets, Grenoble, October
1994, to be published.

Pachet, F. (1995) On the embeddability of
production systems in object-oriented
languages. Journal of Object-Oriented
Programming , Jan. 1995. To appear.

Puget, J.-F. (1992) Intensional and cardinality
constraints. Internal report. Ilog, 1992.

Pope, S. (1991) Introduction to MODE: The
M u s i c a l O b j e c t D e v e l o p m e n t
Environment. In The Well-Tempered
Object: Musical Applications of Object-
Oriented Software Technology , S. T.
Pope, ed. MIT Press.

Ramalho, G., Ganascia, J.-G. (1994) Simulating
Creativity in Jazz Performance.
Proceedings of 12th AAAI conf. Seattle,
Aug. 1994.

Scaletti, C. Johnson, R. E. (1988) An interactive
environment for object-oriented music
composition and sound synthesis.
Proceedings of OOPSLA '88, pp. 222-
233, San Diego.

Tsang, Chi Ping & Aitken, M. (1991)
Harmonizing music as a discipline of
cons t ra in t log ic programming.
Proceedings of ICMC '91, Montréal, pp.
61-64.

Tsang, E. Foundations of constraint
satisfaction. Computation in Cognitive
Science. Academic Press, 1993.

Waltz, D. (1972) Generating semantic
descriptions from drawings of scenes with
shadows. MIT Technical report, AI271,
1972.

Winograd, T. (1993) Linguistics and the
Computer Analysis of Tonal Harmony.
In Machines Models of Music, Edited by
S. M. Schwanauer and D.A. Levitt, MIT
Press.

