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Abstract

We introduce a model for music generation
where melodies are seen as a network of inter-
acting notes. Starting from the principle of max-
imum entropy we assign to this network a proba-
bility distribution, which is learned from an exist-
ing musical corpus. We use this model to gener-
ate novel musical sequences that mimic the style
of the corpus. Our main result is that this model
can reproduce high-order patterns despite hav-
ing a polynomial sample complexity. This is in
contrast with the more traditionally used Markov
models that have an exponential sample com-
plexity.

1. Introduction
Many complex systems exhibit a highly non-trivial struc-
ture that is difficult to capture with simple models. Several
biological systems form networks of interacting compo-
nents (neurons, proteins, genes, whole organisms) and their
collective behaviour is characterized by a complex mosaic
of correlations between its various parts. Arguably, the
ultimate biological origin of purely intellectual constructs
such as language or music, should allow us to look at them
from a similar point of view, i.e. as complex networks of
interacting components. In both cases one would suspect
that essential features of their complexity arise from high-
order, combinatorial interactions. However, a number of
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works in recent years have shown that models based on
pairwise interactions alone capture most of the correlation
structure of some biological systems (Schneidman et al.,
2006; Lezon et al., 2006; Bialek & Ranganathan, 2007;
Mora et al., 2010; Bialek et al., 2012) and even English
words (Stephens & Bialek, 2010).

One of the most popular strategies for algorithmic music
composition is Markov chains (see for example (Roads,
1996)). In order to capture the long-range structure of
musical phrases, high-order Markov models must be used.
This leads to serious overfitting issues: the number of k-
grams in the musical corpus is orders of magnitude smaller
than their total potential number, which is exponential in
k. Typical musical corpora contain a few hundered notes
when the total number of different pitches is a few tens.

In this paper we propose a model consistent with pairwise
correlations between notes across many different time-
distances. We show that, for musical data, combining pair-
wise constraints restricts the space of solutions enough for
higher-order patterns to emerge. That way, we capture long
range musical patterns while avoiding the overfitting is-
sues of high-order models. This approach cannot be imple-
mented as an extension to Markov models, however, and
a different framework is needed. This framework is pro-
vided by the maximum entropy principle (Jaynes, 1957).
Maximum entropy models consistent with pairwise corre-
lations are variations of the Ising or Potts models of statisti-
cal mechanics (see for instance (Baxter, 2007)), which have
a long and rich history as theoretical models for statistical
order and phase transitions. These models belong to the
large family of Probabilistic Graphical Models which offer
a very general framework for modeling statistical depen-
dencies. Our model can be used for generating sequences
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that mimic some aspects of the musical style of a given cor-
pus.

2. The Model
Music has many aspects (melody, harmony, rhythm, form,
sound, etc) which renders realistic models extremely com-
plicated. In this paper we focus on monophonic pitch se-
quences, for simplicity. A pitch sequence is a sequence
of integers {s1, . . . , sN} encoding note pitches ordered as
they appear in a real melody but disregarding any other in-
formation about duration, onset, velocity etc. The variables
si take values from some finite alphabet representing the
different pitches appearing in the corpus. In our model we
are interested in reproducing the correct frequencies of sin-
gle notes and of pairs of notes at distance k

f(σ) ≡ 1

N

N∑
i=1

δ(σ, si) (1)

fk(σ, σ
′) ≡ 1

N − k
∑
|i−j|=k

δ(σ, si)δ(σ
′, sj) (2)

with k = 1, . . . ,Kmax. In the above formulas δ(·, ·) is the
Kronecker delta symbol. The sums run over the whole cor-
pus (i.e. the original pitch sequence). The maximum en-
tropy recipe states that we have to look for the distribution
that maximizes the entropy while being consistent with the
frequency counts in eqs. (1) and (2). This is the least bi-
ased estimate of the true distribution, given the available
information. A simple calculation leads to the following
Boltzmann-Gibbs distribution

P (s1, . . . , sN ) =
1

Z
exp (−H(s1, . . . , sN )) (3)

where H is called the Hamiltonian and is a sum of “poten-
tials” each corresponding to one of the above constraints

H(s1, . . . , sN ) =

−
N∑
i=1

h(si) −
Kmax∑
k=1

∑
i,j

|i−j|=k

Jk(si, sj) . (4)

The partition function

Z ≡
∑
s1

∑
s2

· · ·
∑
sN

exp (−H(s1, . . . , sN )) (5)

guaranties that the distribution is normalized. We will re-
fer to the h’s as the local fields and to the Jk’s as the in-
teraction potentials. Inspired by statistical physics, these
quantities can be thought as external fields acting on the
variables on one hand and interactions between variables
on the other. The Hamiltonian then gives the energy of the
system by summing the contribution of all the above terms.

According to distribution (3), sequences with low energy
have an exponentially larger probability. Therefore, the ef-
fect of the above “potentials” is to bias the individual and
pair probabilities so as to make the model consistent with
the corpus. A graphical representation of our model can be
seen in Figure 1.

Figure 1. Factor graph representing the factorisation of the distri-
bution (3) for Kmax = 2. Factors (squares) are connected to the
variables (circles) according to eq. (4)

3. Results
We first need to train our model. Training the model
means finding the set of local fields and interactions that
can best reproduce the individual and pair frequencies of
the corpus. In other words we want to maximize the like-
lihood of the h’s and J’s given the data. This proce-
dure is difficult computationally since it relies on exact
inference, a NP-hard problem in general(Cooper, 1990).
Among the different existing approximate solutions we
chose to use pseudo-likelihood maximization first intro-
duced in (Ravikumar et al., 2010).

3.1. Pair Frequencies

Once the potentials have been found one can generate new
pitch sequences by sampling from distribution (3). This can
be simply done by the Metropolis Algorithm (Metropolis
et al., 1953). Figure 2 shows a scatter plot for pair frequen-
cies of the corpus VS the ones generated by our model.
For this particular example we used as a corpus the content
of (WeimarJazzDatabase) consisting of 257 transcriptions
of famous Jazz improvisations. There is very good agree-
ment for the more frequent pairs and, as expected, small
pair probabilities are reproduced less accurately.

To better appreciate what the model does it is informative
to look at pair frequencies for different distances separately.
Figure 3 shows colormaps of matrices given by eq. (2) for
k = 1 and 5 for three cases: the original sequence, here
Partita No. 1 in B minor BWV 1002 by Johann Sebastian
Bach (part II double), a first-order Markov model and our
maximum entropy model. The Markov model, by construc-
tion, reproduces perfectly the frequencies of neighbouring
notes (k = 1). However it completely fails at greater dis-
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Figure 2. Model VS observed pair frequencies. The observed
ones are from the corpus (WeimarJazzDatabase). The model fre-
quencies come from a Kmax = 10 model.

Figure 3. Matrices of note-pairs frequencies. Colormaps repre-
senting matrices obtained by counting note-pair occurences (see
eq. (2)). From left to right: the original sequence (J.S. Bach’s
first violin partita), a first-order Markov model and our maximum
entropy model. Top row: k = 1, bottom: k = 5

tances. In the bottom row we see that the particular in-
formation contained in the k = 5 matrix of the corpus is
almost completely lost for the Markov case. The maxi-
mum entropy model, however, performs equally well on
both cases. Here we used a model with Kmax = 10 so
the training will make sure to select a set of potentials that
better reproduce the pair frequencies for all distances up
to 10. The reason for using a first-order Markov model
for comparison with our model is that they have compara-
ble sample complexities. First-order Markov models have
O(|X |2) parameters while our model has O(Kmax|X |2),
where |X | is the alphabet size. In contrast, a Kmax-order
Markov model has O(|X |(Kmax+1)). A high-order Markov
model would reproduce correctly the pair frequencies at all
distances by trivially copying the whole corpus. Examples
of the generated sequences can be heard in the Flow Ma-
chines webpage (MaxEntropyExamples).
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Figure 4. Longest common string lengths between the corpus (J.S.
Bach’s first violin partita) and sequences of size N = 5000 gen-
erated from various models. We average over 100 sequences for
each model.

3.2. Style Imitation

Musical style imitation is a concept which is difficult to
formalize. However, most musicians would agree that it
involves “creatively” rearranging existing material. By that
we don’t mean a mere reshuffling of melodic patterns. In
the new sequence, these patterns must succeed “naturally”
one another just as in the original one. This is a requirement
from a model that aims at imitating a musical style. Addi-
tionally, we would want to be able to control the character-
istic size of the patterns that are used as building blocks of
the new sequence.

Markov models guarantee this “naturalness” by ensuring
that every k-gram is continued according to conditional
probabilities estimated from the corpus. However, it is
very difficult to have a good control on the size of patterns.
There is a sharp transition between an under-fitted regime,
where small chunks are copied, and an over-fitted regime
where very large ones are reproduced exaclty.

In contrast, in our model the size of chunks copied by the
corpus scale linearly with Kmax. In particular we look
for the longest common string (LCS) between generate se-
quences from the different models and the corpus. The re-
sults can be seen in Figure 4, where we also included re-
sults from a variable order Markov model (Pachet, 2003)
for completeness. Here Kmax = 1, . . . , 20 represents the
order for the fixed order Markov models (FOM), the max-
imal order for the variable length Markov models (VOM)
and the maximal interaction range for our maximum en-
tropy model (MaxEnt). The LCS length for FOM explodes
at a very small value of k while, for the VOM, it reaches a
plateau and longer strings are not reachable. In our model
the LCS length seems to have a linear relation with Kmax.
As we discussed earlier, this property is desirable since it
allows to fine-tune the characteristic size of the chunks in-
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volved.

4. Conclusion
We presented a maximum entropy model that captures pair-
wise correlations between notes in a musical sequence, at
various distances. The model is used to generate original
sequences that mimic a given musical style. The particular
topology of this model (see Figure 1) leads to the emer-
gence of high-order patterns, despite the pairwise nature of
the information used, which in turn has the benefits of a
quadratic, in the alphabet size, sample complexity. This al-
lows us to maintain control over the sizes of the common
strings between the corpus and the generated sequences in
a way that outperforms the more commonly used Markov
models (of both fixed and variable order).

Beyond this technical advantage, graphical models like this
one offer a very general setting for modeling statistical de-
pedencies. Work in progress will extend this model in or-
der to account for other aspects of music, such as rhythm
or polyphony. The general idea is the same: additional in-
formation (e.g. note durations) is captured by additional
variables which are coupled with pairwise interactions. In
that way, we keep the quadratic sample complexity.
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