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ABSTRACT 

This work addresses the issue of retrieving efficiently sound 
samples in large databases, in the context of digital music 
composition. We propose a sequence generation mechanism called 
musical mosaicing, which enables to generate automatically 
sequences of sound samples by specifying only high-level 
properties of the sequence to generate. The properties of the 
sequence specified by the user are translated automatically into 
constraints holding on descriptors of the samples. The system we 
propose is able to scale up on databases containing more than 
100.000 samples, using a local search method based on constraint 
solving. In this paper, we describe the method for retrieving and 
sequencing audio samples, and illustrate it with rhythmic and 
melodic musical sequences. 

1. I NTRODUCTI ON 

There is a natural tendency among modern musicians to compose 
music by assembling pieces of existing material (sounds samples) 
rather than entirely from scratch. This tendency is particularly 
strong in the community of Techno or Dance music, but is also 
becoming commonplace in other musical genres, in which 
musicians make extensive use of computers, through the use of 
software such as sequencers (e.g. Cubase) or sound production 
systems (e.g. ProTools). 

Composing music by assembling samples manually raises 
difficult problems when database get very large, which are not 
adressed by traditional software. First, it is difficult to find 
individual samples in large libraries, because samples are difficult 
to label and classify. Typically, the user manually selects the 
sounds he/she wants to use or reuse, and locates them in the music 
sequence he/she is building. Moreover, the size of sample 
databases is such that it is hardly possible to know all the sounds it 
contains and therefore to retrieve by hand the correct samples. 
Secondly, samples are usually not treated in isolation, and must 
satisfy various properties and constraints between each other, to fit 
into the sequence. For instance, a composer may want to ensure 
some timbral continuity or discontinuity between successive 
samples, or may want to produce a given melody, etc. These 
constraints have to be enforced manually by the composer. 

We propose a mechanism which allows to handle both 
problems (sample retrieval and sequence generation) at the same 
time in a computer-assisted way.  
The general problem of classifying and retrieving audio samples is 
the subject matter of the Mpeg7 standardization effort. This 
problem relies on the extraction of relevant low-level features out 

of music samples, which has been addressed by many researchers, 
such as Wold [1]. The general idea of combining retrieval and 
sequence generation was introduced by Pachet [2], in the context 
of music titles sequencing. In addition, the retrieval system used 
complete search methods which do not scale-up to very large 
databases. The notion of constraints on sounds was addressed by 
Schwarz [3], who proposed a system which handles continuity 
constraints on samples. Our music composition system offers more 
constraints than continuity. As we will see, many other types of 
constraints on sounds may be useful when composing, such as 
difference, cardinality, distribution, etc. 

 
The mechanism we propose is called musaicing (for musical 

mosaicing), by analogy with image mosaicing, which consists in 
building an image by assembling a large number of small images 
(see Robert Silvers’  Photomosaics [4]). This approach exploits our 
capacity to synthesize a perception at a macro level of an image or 
a melody, from the cumulated perception of items at the micro 
levels such as pixels or samples. Similarly to image mosaicing, 
musaicing allows to build a musical sequence by specifying global 
properties of the sequence, and letting the system select and 
sequence automatically the sound samples.  
Musaicing can be used to compose sequences with arbitrary high-
level properties, as we will see below, but can also be used to 
produce imitations of target sound sequences, as in image 
mosaicing. For example, a musical mosaic can be made from a 
song of the Beatles, recomposed from small extracts of the most 
famous rock titles of the 60ies. This approach provides two levels 
of listening: a distant listening which “ sounds like”  the original 
Beatles song, and a closer listening which reveals the different 
extracts of the 60’ s titles that make up the mosaic.  
This principle of composing music by sequencing samples has 
been exploited e.g. by composer John Oswald [5], who manually 
copied and pastes the samples. The musaicing system we propose 
here is a generalization of this approach to handle arbitrary sample 
characteristics and sequence properties. 

2. THE M USAICING M ECHANISM   

In this section, we present how the system produces sound 
sequences, which we call musaics, out of large databases of 
samples. As explained above, musaics are made up of individual 
segments, where each segment is a sound sample from a given 
database. The generation problem is seen as a constraint problem 
on the properties of the whole sequence, as well as the properties 
of each segment that constitutes it. By selecting the right samples, 
we assign values to the segments so that all the constraints 
specified by the user are optimally satisfied. In a nutshell, the 
generation problem is defined by a set of variables (the segments 
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of the musaic), a set of constraints weighted along their 
importance, with their associated cost functions which aggregate 
the constraints costs on variables, and a global cost function to 
minimize. 

2.1. Definition of the sequence proper ties 

Any wished property of the sequence can be translated into a 
specific constraint. There are two types of constraints: segment 
constraints and sequence constraints. 

 
A segment constraint is a local constraint on one specific segment 
of the sequence, related to one specific descriptor. The segments 
are described using a set of descriptors, such as:  
- their mean pitch (calculated using Zero Crossing Rate), 
- their loudness (calculated using energy), 
- their percussivity (calculated using amplitude variations),  
- their global timbre (calculated using spectral distribution),... 
A segment constraint imposes a target value for one descriptor, for 
example a given pitch or a given percussivity. 

 
A sequence constraint controls a property of the global sequence. 
These constraints can apply any set of segments, which can be the 
whole sequence. We have defined several such constraints:  
- distribution  constraints are the most important constraints 
for sequencing problems: they control the location of different 
samples in the sequence, according to their properties. For 
instance, we can use them to impose regular rhythmic patters, by 
specifying a distribution of percussive sounds along the sequence, 
- parameters  continuity constraints   control  the continuity of 
segments according to a specific dimension or feature. For 
example, the pitch continuity constraint reduces the difference 
between pitches of consecutive samples, and the title continuity 
constraint aims at choosing consecutive samples in the sequence 
that are also consecutive in the original song from which they are 
extracted. The system proposed by Schwarz [3] is based on 
parameters continuity between successive elements. 
- cardinality  constraints   deal  with  the  number  of  different 
samples in the sequence, allowing to control the uniformity or the 
variety of the samples in the musaic according to specific 
parameters. The most basic cardinality constraint is the ‘All-
Different’  constraint, but they can be as diverse as ‘ 80% of 
percussive sounds’ , or ‘ pitches follow a distribution centered 
around 440 Hz’ ,... 
Contrarily to segment constraints, which are limited by the number 
of descriptors of the segments, the sequence constraints can be of 
any type, and any user can easily build up new ones. 

 
Once all the constraints are defined, the system provides another 
control on the sequence by associating weights to them. These 
weights represents how important it is to satisfy the constraint 
during the sequencing. For example, on a 0-100 scale, setting the 
‘Pitch constraint’  weight to 100 and the ‘All-different’  weight to 
50 means that it is twice as important to obtain correct pitches than 
to have only unique samples. These weigths define the priority 
when all the constraints can not be solved simultaneously, which is 
the most frequent case. 

 

There are two ways to generate the constraints. In manual 
mode, the user selects all the constraints by hand, whereas in 
imitation mode, the segment constraints are automatically specified 
from a target song the user wants to rebuild:  the musaic will be 
made of samples with the same properties as the original title’s, 
i.e. the same descriptors’  values. These local segment constraints 
are sufficient to build a musaic, but there is no guarantee on the 
global structure of the sequence. Therefore, to cope with this 
problem, the user can specify additional sequence constraints, such 
as continuity or distributions, etc… 

2.2. Satisfaction of the sequence proper ties 

The system aims at generating a musaic that satisfies all the 
constraints defining the sequence properties. But most of the time, 
the constraints cannot all be satisfied at the same time: we need to 
introduce a measure of the distance between the musaic and the 
desired sequence. Each constraint is therefore associated to cost 
functions evaluating its satisfaction for each segment. Building the 
musaic then consists in minimizing all the constraints cost 
functions at the same time, to fit all of the properties 
simultaneously. 

2.2.1. Segment constraint cost function 

In the case of a segment constraint, the cost function is the 
difference between the segment descriptor’s value and the 
specified target value, normalized between 0 and 1. For instance, 
the cost of a ‘pitch’  constraint, imposed on the segment ‘ segment’  
that contains the sample ‘ sample’ , is defined as follows: 
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The normalization is done by dividing the pitch difference by the 
maximum pitch difference between two samples. 

2.2.2. Sequence constraint cost function 

In the case of a sequence constraint applied on a set of segments, 
we need to build up a cost function that evaluates the contribution 
of each segment to the global satisfaction of the constraint, and 
returns a normalized result between 0 and 1. For instance, the cost 
of the ‘All different’  constraint, applied on the whole sequence 
‘ sequence’ , is defined as follows for the segment ‘ segment’  
containing the sample ‘sample’ :  
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If all the samples in the sequence are the same as ‘sample’ , the ‘ all 
diff’  cost is 1, the constraint is not satisfied at all. On the contrary, 
when no other segment contains ‘segment_sample’ , the constraint 
is satisfied, and the cost is 0. 
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For a distribution constraint, the cost takes the location of the 
sample into account. Here is an example of ‘ percussive tempo’  
constraint, which imposes regular percussive sounds along the 
sequence. This constraint has 2 control parameters : the tempo, 
between 50 and 180 bpm, which controls the period between 2 
consecutive percussive sounds, and the phaseshift, between 0 and 
2π, which controls the position of the first percussive sound in the 
sequence. The constraint cost is defined as follows, for the 
segment ‘ segment’  containing the sample ‘sample’ :  

*  the system first computes the location of the segments that 
have to be percussive, using the tempo and the phaseshift, and 
sets their tempo index to 1; the tempo indexes of the others 
segments are set to 0. 
*  the cost is then computed as : 
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The cost diminishes as the percussivity of the indexed segments 
increases, and reaches 0 when all these indexed segments have the 
highest possible percussivity. Note that the constraint does not take 
the non-indexed segments into account, therefore they can take any 
value without affecting the cost. 

2.2.3. From constraint costs to segment cost 

The constraint cost functions evaluate the satisfaction of one 
specific constraint for each segment. The solving of the problem 
requires also the definition of segment costs, which combine and 
evaluate the satisfaction of all the constraints related to one 
segment. These segment costs represent the contribution of the 
segment to the global cost of the sequence, i.e. whether a segment 
fits well the sequence properties. These segment costs take each 
constraint into account according to the constraint weight that 
represents the importance of the constraint satisfaction: 
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These segment costs enable to detect the segments that least fit the 
sequence, in order to replace them iteratively during the building of 
the musaic. 

2.2.4. From segment costs to global cost 

Finally, we build a global cost function, which is an 
aggregation of all the constraints costs, computed by summing all 
the segment costs of the musaic segments. That global cost 
function represents the distance between the current musaic and 
the desired sequence: 
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This is the criterium which evaluates the global satisfaction of all 
the constraints, and which has to be minimized during the building 
of the musaic. 

2.3. Building the musaic 

Building the musaic consists in finding a sequence out of a 
database of samples that best satisfies all the sequence properties 
defined by the constraints. 
When dealing with very large databases of samples, a complete 
search method is absolutely prohibited in order to obtain quick 
results. So the constraint system is solved using a local search 
algorithm called “ Adaptive search”  [6][7], which was shown to be 
well adapted for large-scale combinatorial problems for which 
optimality is not required. Indeed, in the case of music, the 
interesting point is that, if no exact solution exists, there are many 
approximate solutions which can provide very different and 
interesting results. For example, an application of this local search 
method to music composition on symbolic values (pitches) is 
investigated by Truchet [8], who has shown that the method 
outperforms complete search methods using CSP techniques. The 
“ Adaptive search”  algorithm is defined as follows: 
1. Random initialization 
REPEAT 
2. Compute all non-tabu variables costs 
3. Select the highest-cost variable Vh 
4. Search for the value v of Vh inducing the lowest global cost 
5. If the global cost cannot be improved, mark Vh as ‘ tabu’  
6. If all the variables are tabu, random reinitialization 
UNTIL (global cost<e) or (max iterations reached) 

 
In the case of musaicing, we have added a preliminary step to the 
“ Adaptive search”  that consists in defining the variables domains, 
i.e. all the possible samples for each segment of the musaic. The 
user controls the size of the domain by  specifying it in the 
sequence properties. For each segment, the domain is chosen by 
setting a restriction on the values of the descriptors linked to the 
segment constraints. The domain definition also takes the weights 
of the segment constraints into account: the higher the weight, the 
smaller the domain. Once the domains are defined, the “ Adaptive 
search”  algorithm applied to musaicing is: 
1. Random initialization :  

The sequencing starts with an initial sequence built up from a 
set of samples taken randomly in the predefined domains, 
evaluates all the constraint costs related to the current 
sequence, and computes the global cost that has to be 
minimized, 

REPEAT 
2. Compute all non-tabu variables costs: 

i.e. the segments costs related to each sample of the sequence, 
3. Select the highest-cost variable : 

Selection of the ‘ worst’  segment that induces the highest 
constraint cost, i.e. that is the most responsible for the 
distance between the current musaic and the desired 
sequence, 

4. Search for the value inducing the lowest global cost: 
Browse the database of samples in order to find whether 
another sample that better fits the constraints could replace 
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the ‘ worst’  segment, and consequently diminish the 
constraints costs and the distance from the desired sequence, 

5. If the global cost cannot be improved, mark Vh as ‘ tabu’ : 
If the sample can not be replaced to improve the sequencing, 
this significates that the current configuration of the sequence 
does not allow to obtain a better local result around this 
segment, so the ‘ worst’  segment is marked as ‘ tabu’ . That 
means that the segment can not be selected as the ‘ worst’  
segment for a few iterations, during which the sequence 
configuration can change, 

6. If all the variables are tabu, random reinitialization: 
If all segments are ‘ tabu’ , the sequence has reached a stable 
local minimal cost configuration depending on the initial 
random sequence, and no changes of the samples can improve 
the sequencing: a new random initial samples sequence is 
computed. Indeed, as the process is very quick, we can repeat 
the “ adaptive search”  algorithm several times, by taking at 
each time a new random initial sequence, 

UNTIL  the global cost is lower than a predefined threshold, or 
the maximum number of iterations is reached. The final musaic is 
the best sequence of all these attempts, i.e. the sequence that has 
the lowest final global cost. 
 

Once the solution is found, the musaic quality can be improved 
by a sequence refining, consisting in applying global 
transformations on transitions, in order to smoothen possible rough 
transitions between samples. 

3. EXAMPLES 

3.1. Basic example 

First we present a basic example that clearly shows how the 
algorithm works and takes the constraints and their associated 
weights into account. The goal of this example is to build a musaic 
imitating a synthesized target recording characterized by a pitch 
that increases continuously from 0 to 1000Hz. 
The database contains samples extracted from 50 pop and rock 
songs, including a set of samples extracted from 1 synthesized 
recording with the same characteristics as the target, except that 
the pitch decreases continuously from 1000 to 0Hz. 

 

3.1.1. Pitch constraint 

First, we impose only one pitch constraint on all the segments, 
imitating the increasing pitch of the target sequence. The constraint 
weight is set to 50. Figure 1 shows the pitch analysis of the 
musaic: 

 
Figure 1: Pitch analysis of the musaic  

 

First, as figure 1 shows, the pitch constraint is globally satisfied: 
the pitch increases continuously, and is close to the target pitch. 
Secondly, the imitation is good, in the sense that the samples 
selected by the system are extracted from the pitch decreasing 
synthesized recording, which has the closest characteristics from 
the original target. This property is obvious on the figure 1, where 
the little ‘pitch sawteeth’  show that the selected samples have all a 
decreasing pitch. 

3.1.2. Pitch and Continuity constraints, equal weights 

We can complexify the previous example by adding a continuity 
constraint on all the segments. That continuity constraint goes in 
the way of the pitch constraint. Indeed, the pitch constraint 
imposes an increasing pitch, whereas the continuity constraint 
requires the use of longer extracts from the database, whose 
pitches decrease. Figure 2 shows the pitch analysis of the musaic 
when the weights of the two constraints are set to 50: 

 
Figure 2: Pitch analysis of the musaic  

 
The pitch constraint is globally satisfied: the pitch increases, but 
not continuously anymore. 
The continuity constraint is locally satisfied: the system tries to use 
as much as possible contiguous samples from the database, and we 
can see larger pitch decreasing parts. Indeed, since the two 
constraints are conflicting, the system finds a balance between 
them by building ‘ pitch sawteeth’ . The pitch globally increases, 
but sometimes locally decreases. 

3.1.3. Pitch constraint weight < Continuity constraint weight 

Finally, we can experiment with the influence of the weights of the 
constraints on the resulting musaic. The continuity constraint’ s 
weight is now raised to 100, whereas the pitch constraint’s weight 
stays at 50. Figure 3 shows the pitch analysis of the musaic: 

 
Figure 3: Pitch analysis of the musaic  

 
The pitch constraint is very slightly satisfied: the pitch only shows 
a global long term increasing. 
On contrary, the continuity constraint is very well satisfied: the 
sequence has been divided in only 4 parts, represented by the 
bigger ‘pitch sawteeth’ . Indeed, the system still finds a balance 
between the two conflicting constraints by building ‘pitch 
sawteeth’ . But the balance has been modified by applying a higher 
weight to the continuity constraint. The satisfaction of the 
continuity constraint is given priority over the satisfaction of the 
pitch constraint, resulting in larger ‘decreasing pitch sawteeth’ . 
Hence, the user can control the size of the “ teeth”  with the relative 
weights of the constraints.  
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This example first shows that, in the case of conflicting constraints, 
the system takes both constraints into account, and finds a balance 
between them. The second conclusion is that the user has a 
complete control on that balance, by setting the relative weights of 
the constraints. 

3.2. Percussive tempo 

As explained in 2.2.2., the percussive tempo is an example of 
sequence constraint that combines features retrieval and samples 
distribution modeling: the system uses the percussivity feature to 
find the most percussive sounds and their location is controlled by 
a distribution model. That constraint consists in specifying two 
parameters : a tempo and a phaseshift, and intends to set 
percussive samples in the musaic according to them. 
 
Figure 4 shows an example of percussive tempo 80 with null 
phaseshift: 

 
Figure 4: Signal of the musaic 

 
The constraint is clearly satisfied: we can see regular peaks on the 
signal, corresponding to the percussions sounds., with an evaluated 
tempo of 78. The difference between the specified tempo and the 
musaic tempo is due to the length of the musaic samples. 
 
We can also add a phaseshift to the constraint. Figure 5 shows an 
example of percussive tempo 130 with phaseshift=π/2: 

 
Figure 5: Signal of the musaic 

 
The percussive tempo constraint is still clearly satisfied: we can 
see regular percussion peaks on the signal, with an evaluated 
tempo of 129. The phaseshift is also satisfied, as shown by the 
timeshift at the beginning of the signal. 
These examples show the influence of the two parameters on the 
resulting musaic. 

3.3. Combination of segment and sequence constr aints 

Finally, a more powerful use of musaicing is shown below, by 
combining different types of constraints. 

3.3.1. Simultaneous Pitch and Percussive Tempo constraints 

First, we impose simultaneously a pitch constraint and a 
percussive tempo constraint. Here is an example of a percussive 
tempo of 100 (with no phaseshift), with a constraint on the pitch 
‘ increase and then decrease along the sequence’ . Figure 6 shows 
the signal of the resulting musaic: 

 
Figure 6: Signal of the musaic 

 
Figure 6 shows that the percussive tempo constraint is well 
satisfied: we can see regular percussion peaks on the signal, with 
an evaluated tempo of 103. 
To evaluate the satisfaction of the pitch constraint, we need a pitch 
analysis of the signal, shown on figure 7: 

 
Figure 7: Pitch analysis 

 
Figure 7 shows that the pitch globally satisfies the constraint 
‘ Increase then Decrease’ . The local irregularities are due to the 
percussive sounds, whose pitches are not significant. However, the 
fact that even the extremal pitch values ‘ increase then decrease‘  
shows that the pitch constraint has also an influence on the 
percussive samples. On contrary to pitch and continuity presented 
in 3.1., the two constraints are not conflicting, and can be satisfied 
at the same time. 
This combination of constraints is interesting for a target song 
imitation. Indeed, the pitch constraint is interesting for melody 
imitation: with an efficient pitch analysis, the system is able to 
build a musaic that follows the melody of the target song. The 
additional percussive tempo constraint gives the possibility to link 
a rhythmic structure to the musaic. 

3.3.2. Pitch and 2 Simultaneous Percussive Tempo constraints 

We can obtain even more precise control on the musaic by 
combining several constraints of the same type, but  with different 
parameters. For instance, we can have a more precise percussive 
rhythm by controlling separately the different types of drum 
sounds. Indeed, the percussive sounds can be classified into bass-
drum-like and snare-drum-like sounds using their zero-crossing 
rate (ZCR), as shown in [9]. An interesting rhythmic control 
consists in building two percussive tempo constraints, one applied 
on bass-drum sounds, whose ZCR is low (LF), and the other 
applied on snare-drum sounds, whose ZCR is high (HF). These 
two constraints are specified simultaneously with different 
parameters. For example, we can build a high-level rhythmic 
structure, with bass-drum sounds following a fast tempo (132), and 
snare-drum sounds following a slower tempo (2/3 of the previous 
tempo = 88), so that snare-drum sounds occur regularly every 1.5 
bass-drum sound. In order to avoid imultaneous sounds conflicts, 
we introduce a slight delay (phaseshift =π/2)  for the snare-drum 
sounds. In addition, we added the pitch constraint ‘ Increase then 
Decrease’ . Figure 8 shows the resulting musaic: 
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Figure 8: Signal of the musaic  

 
The signal is now too complex to show explicit properties of the 
musaic, we need to use filters to observe its different components. 
 
Figure 9 shows the low-pass filtered part of the signal: 

 
Figure 9: Low Pass Filtered 

 
Figure 9 shows regular percussion peaks on the signal, with an 
evaluated tempo of 131. These low-frequency peaks correspond to 
the bass-drum percussion sounds, showing that the percussive 
tempo constraint on LF is satisfied. 
 
Figure 10 shows the high-pass filtered part of the signal: 

 
Figure 10: High Pass Filtered 

 
Figure 10 shows regular percussion peaks (that are less visible in 
the middle part of the signal), with an evaluated tempo of 87. 
Similarly to figure 9, these high-frequency peaks correspond to the 
snare-drum percussions, showing that the percussive tempo 
constraint on HF is also satisfied. 
 
In addition, the pitch analysis  on figure 11 shows that the pitch 
still globally satisfies the constraint ‘ Increase then Decrease’ : 

 
Figure 11: Pitch analysis 

 
The combination of these 2 percussive tempo constraints provide a 
complex rhythmic structure, using a  (B)ass / (S)nare  sequence 
following the drum track : [BS__B__SB___]. That rhythmic 
structure can easily be controlled by changing the tempo and 
phaseshift of the constraints. 
 
These examples show how combinations of constraints provide 
efficient controls on the sequencing. These controls can be very 
useful for musical composition, which can either be done from 
scratch or be based on the imitation musaic of an preexisting 
musical recording. The examples shown in the paper can be heard 
at: http://www.csl.sony.fr/Music. 

 

4. CONCLUSION 

We have introduced a method for retrieving and sequencing 
samples out of a large database. This method spares to the user the 
task of selecting and locating individual samples. Instead, the user 
specifies high level properties of the targeted sequence. These 
properties are interpreted by a constraint solver. The examples 
show the power and flexibility of the approach. The expressive 
power of musaicing is determined by the nature of the available 
constraints, but the algorithm presented here makes it very easy to  
define new constraint classes. 
Current work consists in coupling the system with a more refined 
segmentation of source and target music titles into samples, 
including the detection of stable notes, percussions and singing 
voice. Secondly, a more robust analysis of the features of the 
samples is under development, including more accurate pitch 
tracking as well as instruments and voice characterization. These 
improvements open the door for new kinds of audio 
transformation, such as reinstrumentation, e.g. replacing guitar by 
organ, drums by congas, etc. Finally, thanks to the efficiency of the 
constraint solver, we envisage the use the system in a real time 
context. This will allow users to change the parameters of 
musaicing (adding, removing constraints, changing the various 
weights) in real time, while listening to the result. Such a real time 
musaicing would allow to further reduce the gap between 
composition and listening, and therefore make composition 
accessible to a larger audience. 
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