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ABSTRACT 

High-Level music descriptors are key ingredients for music information retrieval systems. Although there is a long 
tradition in extracting information from acoustic signals, the field of music information extraction is largely heuristic 
in nature. We present here a heuristic-based generic approach for extracting automatically high-level music 
descriptors from acoustic signals. This approach is based on Genetic Programming, used to build relevant features as 
functions of mathematical and signal processing operators. The search of relevant features is guided by specialized 
heuristics that embody knowledge about the signal processing functions built by the system. Signal processing 
patterns are used in order to control the general processing methods. In addition, rewriting rules are introduced to 
simplify overly complex expressions, and a caching system further reduces the computing cost of each cycle. 
Finally, the features build by the system are combined into an optimized machine learning descriptor model, and an 
executable program is generated to compute the model on any audio signal. In this paper, we describe the overall 
system and compare its results against traditional approaches in musical feature extraction à la Mpeg7. 

 

1. INTRODUCTION 

The exploding field of Music Information Retrieval 
has recently created extra pressure to the community 
of audio signal processing, for extracting 
automatically high level music descriptors. Indeed, 
current systems propose users with millions of music 
titles (e.g. the peer-to-peer systems such as Kazaa) 
and query functions limited usually to string 
matching on title names. The natural extension of 
these systems is content-based access, i.e. the 
possibility to access music titles based on their 
actual content, rather than on file names. Existing 

systems today are mostly based on editorial 
information (e.g. Kazaa), or metadata which is 
entered manually, either by pools of experts (e.g. 
All Music Guide) or in a collaborative manner (e.g. 
MoodLogic). Because these methods are costly and 
do not allow scale up, the issue of extracting 
automatically high-level features from acoustic 
signals is key to the success of online music access 
systems. 
Extracting automatically content from music titles 
is a long story. Many attempts have been made to 
identify dimensions of music that are perceptually 
relevant and can be extracted automatically. One of 
the most known is tempo or beat. Beat is a very 
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important dimension of music that makes sense to 
any listener. [1] introduced a beat tracking system 
that successfully computes the beat of music 
signals with good accuracy. 
There are, however, many other dimensions of 
music that are perceptually relevant, and that could 
be extracted from the signal. For instance, the 
presence of voice in a music title, i.e. the 
distinction between instrumentals and songs is an 
important characteristic of a title. Another example 
is the perceived intensity. It makes sense to extract 
the subjective impression of energy that music 
titles convey, independently of the RMS volume 
level: with the same volume, a Hard-rock music 
title conveys more energy than, says, an acoustic 
guitar ballad with a soft voice. There are many 
such dimensions of music that are within reach of 
signal processing: differentiate between “live” and 
studio recording, recognize typical musical genres 
such as military music, infer the danceability of a 
song, etc. Yet this information is difficult to 
extract automatically, because music signals are 
usually highly complex, polyphonic in nature, and 
incorporate characteristics that are still poorly 
understood and modeled, such as transients, 
inharmonicity, percussive sounds, or effects such 
as reverberation. 

2. THE TRADITIONAL METHOD 

2.1. Combination of Low-Level Descriptors 

Typically, the design of a descriptor extractor 
consists in combining Low-Level Descriptors 
(LLDs) as relevant characteristics of acoustic 
signals (features) using machine learning 
algorithms. More precisely, the traditional 
approach in descriptor design is the following (see, 
e.g. [2], [3], [4]): 
Firstly, the signals of a reference database are 
labeled with the descriptor’s values. These values 
can be obvious to get (e.g. Presence of singing 
voice), or can require the use of perceptive tests 
(e.g. the global energy of musical extracts). In this 
latter case humans are asked to enter a value for 
the descriptor, and then statistical analysis is used 
to find the average values considered thereafter as 
grounded truth. 
Secondly, several features of the associated audio 
signals are computed. A typical reference for audio 
signal features is the Mpeg7 standardization 
process [5], that proposes a battery of LLDs for 
describing basic characteristics of audio signals. 
The purpose of Mpeg7 is not to solve the problem 

of extracting high level descriptors, but rather to 
propose a basis to design such descriptors. 
Eventually, the most relevant features, i.e. that best 
map with the labels or values of the signals, are 
selected and combined into machine learning 
processes, to provide an optimal model for the 
descriptor. 

2.2. Limitation of the traditional method 

The traditional method sketched above works well 
only for relatively easy problems; problems for which 
generic low level features are adapted. However, 
generic features can only extract information which is 
“predominant” in the signal, and are, by definition, 
unable to focus on specific, problem-dependent 
properties. The core assumption of this paper is 
precisely that in order to solve more difficult 
problems one needs specific features adapted to the 
problem at hand. The following problem illustrates 
this claim. 

A simple example: Sinus + Colored Noise 

Let us consider the problem of detecting a sinus wave 
in a given frequency range (say 0-1000Hz) mixed 
with a powerful colored noise in another frequency 
range (1000-2000Hz). As the colored noise is the 
most predominant characteristic of the signal, generic 
features such as Mpeg7’s are unable to detect the 
hidden sinus. For instance, when we look at the 
spectrum of a 650Hz sinus mixed with a 1000-
2000Hz colored noise (fig.1), the peak of the sinus is 
visible but not predominant, and is thus impossible to 
extract automatically using a generic feature. 
 

 

 
Fig 1: Spectrum of a 650Hz sinus  mixed with 

1000-2000Hz colored noise 
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Of course, this problem is easy to solve by hand, 
for instance by applying a pre-filtering to the 
signal that cuts off the frequencies of the colored 
noise, so that the sinus emerges from the spectrum, 
and becomes a predominant property (see Fig. 2). 
 

 
Fig 2: Spectrum of a 650Hz sinus  mixed with 
1000-2000Hz colored noise, pre-filtered by a 

1000Hz Low-Pass Filter 
 
This basic example illustrates the fact that 
combinations of basic LLDs cannot cover a 
function space wide enough to find specialized 
extractors. Indeed, we claim that high-level 
descriptor can be obtained by some linear 
combination of basic LLDs. An automatic system 
that produces extractors has to be able to search in 
a larger function space, as experts in signal 
processing normally do. Such a search space has to 
include not only actual operators but also 
compositions thereof as well as all the possible 
“in-between” processes such as filters or peak 
extractions inserted to improve the efficiency of an 
extractor. 

3. IMPROVING TRADITIONAL LLD 
COMBINATION USING AUTOMATIC 
OPERATORS COMPOSITION 

The design of specific features that are relevant for a 
given description problem is usually done by hand by 
signal processing experts. This section introduces the 
idea of generating automatically such specific 
features adapted to a particular problem. 

3.1. Motivation for an automatic system for 
descriptors extraction 

Although there is no known general paradigm for 
designing domain-specific features, their design 
usually follows some sort of patterns. One of them 

consists in filtering the signal, splitting it into 
frames, applying specific treatments to each 
segment, then aggregating all these results back to 
produce a single value.  
This is typically the case of the beat tracking 
system described in ([1]), that can schematically be 
described as an expansion of the input signal into 
several frequency bands, followed by a processing 
of each band, and completed by an aggregation of 
the resulting coefficients using various aggregation 
operators, to yield eventually a float representing 
(or strongly correlated to) the tempo. The same 
applies to timbre descriptors proposed in the music 
information retrieval literature ([6], [7]) an more 
generally to most audio descriptors described in 
the literature.  
Of course, this global scheme of 
expansion/reduction is under specified, and an 
infinite number of such schemes could be 
envisaged. Our goal is therefore to design a system 
that is able to 1) search automatically relevant 
signal processing features, seen as compositions of 
functions and build a model of the descriptor and 
2) reduce the search space significantly using 
generic knowledge on signal processing operators. 

3.2. Definition of a description problem 

In the context of an automatic modeling of 
descriptors from numeric signals, the definition of the 
description problems handled by the system has to 
remain simple to preserve the generality of the 
approach. One simple way to define a description 
problem is to use the supervised learning approach: a 
set of labeled signals, also called learning database, 
defines the description problem. These labels are 
either numeric values, such as an evaluation of their 
“musical energy” (between 0 and 1), or a class label, 
such as the “presence of a singing voice” or not, or 
the genre chosen in a given taxonomy. The system 
will then finds the rules of the labeling of the signals, 
i.e. the model of the descriptor, by designing a 
function which produces outputs as close as possible 
to the learning database. 

3.3. General Principle of the “Extractor 
Discovery System” (EDS) 

The key idea of our approach is to substitute the 
combination of basic LLDs by the composition of 
signal processing operators: our system EDS 
composes automatically operators to discover 
features as signal processing functions that are 
optimal for a given descriptor extraction task. 
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The global architecture of EDS, illustrated in 
Figure 3, consists in two parts: modeling of the 
descriptor and synthesis of the extractor. Both 
parts are fully automatic and lead eventually to an 
extractor for the descriptor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Global Architecture of EDS 

 
The modeling of the descriptor is the main part of 
EDS. It consists in searching automatically for a 
set of relevant features using the genetic search 
algorithm, and then to search automatically for the 
optimal model for the descriptor, that combines 
these features. 
The search for specific features is based on genetic 
programming, a well-known technique for 
exploring search spaces of function compositions 
(see [8]). The genetic programming engine 

composes automatically signal processing 
operators to build arbitrarily complex functions.  
Each built function is given a fitness value which 
represents how well the function performs to 
extract a given descriptor on a given learning 
database. 
The evaluation of a function is very costly, as it 
involves complex signal processing on whole 
audio databases. Therefore, to limit the search, a 
set of heuristics are introduced to improve the a 
priori relevance of the created functions, as well as 
rewriting rules to simplify functions before their 
evaluation. 
Once the system has found relevant features, it 
combines them to feed them into various machine 
learning models, and then optimizes the model 
parameters. 
The synthesis part consists in generating an 
executable file to compute the best model on any 
audio signal. This program allows computing this 
model on arbitrary audio signals, to predict their 
value for the modeled descriptor. 

4. EDS TECHNICAL DESCRIPTION 

We describe here the three main ingredients of the 
EDS system: the automatic construction of signal 
processing functions, the adaptation of these 
functions for a given descriptor, and the combination 
of those into a general descriptor model. 

4.1. Automatic construction of features 

Functions are represented in EDS as compositions 
of basic operations applied on an arbitrary input 
audio signal. The automatic construction of correct 
functions relies on the control of the types of data 
handled by the functions, and on the introduction 
of signal processing expertise as heuristics. 

4.1.1. Representation of functions as signal 
processing operators trees 

The basic operators used by EDS can be 
mathematical, such as taking the mean values of a 
set, or can process a signal, temporally (such as 
correlation), or spectrally (such as a low-pass 
filtering). In addition, some operations are 
parameterized using constant values (like cut-off 
frequencies), or external signals (for example a 
correlation with another, fixed, reference signal). 
To account for the specificity of audio extraction, 
we also introduced operators to implement the 
global extraction schemes, such as described in 
3.1. For instance, the Split operator splits a signal 
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into frames, an operation that is routinely 
performed when a given treatment has to be made 
on successive portions of the signal. 
 
The functions built by composing these operators 
have to contain at least one argument labeled 
InSignal, which is instantiated with a real audio 
signal before the evaluation of the function. Figure 
4 shows an example of the syntactic representation 
for a function that is a composition of basic 
operators (FFT, Derivation, Correlation, Max): 
 

 
Fft(Derivation(InSignal), Max(Correlation  

(InSignal, Constant_Signal)) 
 

<==> 
F f t

D e r i v M a x

I n p u t S i g n a l C o r r e l a t i o n

I n S i g n a l C o n s t a n t _ S i g n a l  

Fig. 4: The syntactic tree of a function in EDS 

4.1.2. Data Types 

The need for typing is well-known in Genetic 
Programming, to ensure that the functions 
generated are at least syntactically correct. 
Different type systems have been proposed for GP, 
such as strong typing ([9]) that mainly differentiate 
between the “programming” types of the inputs 
and outputs of functions. 
In our context, the difference between the 
programming types floats, vectors, or matrix, is 
superficial. For example, the operator "Abs" 
(absolute value) can be applied on a float, a vector, 
etc. This homogenous view of values yields 
simplicity in the programming code, which we 
need to retain.  
However, to control the physical processes in EDS, 
we need to distinguish how the functions built by 
the system handle the data, at the level of their 
“physical dimension”. For instance, audio signals 
and spectrum can be seen both as vectors of floats 
from the usual typing perspective, but they are 
different in their dimensions: a signal is a time to 
amplitude representation, while a spectrum 
associates frequency to amplitude. Thus, these data 
have to be processed differently. Our typing 
system, based on the following constructs, 
represents this difference, to ensure that our 
resulting functions make sense. 

Using only three physical dimensions (time “t”, 
frequency "f", and amplitudes or non-dimensional 
data “a”), we are able to represent most of the data 
types handled by the system, by building atomic, 
vector, and functional types. 
 
 “Atomic” types describe the physical dimension 
of a single value. For instance: 

- Position of a drum onset in a signal: “t”, 
- Cut-off frequency of a filter: “f”,  
- Amplitude peak in a spectrum: “a”. 

 
“Functional” types represent data of a given type, 
which are evolving in a dimension of another type. 
The evolution type is separated from the data type 
using the ":" notation. For instance: 

- Audio signal (amplitude evolving in time): 
"t:a",  

- Spectrum (amplitude evolving in 
frequency): "f:a". 

 
“Vector” types, notated “V”, are special cases of 
functions, used to specify the types of 
homogeneous sets of values without dimensional 
evolution. For instance: 

- Temporal positions of the autocorrelation 
peaks of an audio signal: “Vt” 

- Amplitudes of these autocorrelation peaks: 
“Va”. 

 
In the case of functional data with multiple 
evolving or vector dimensions, all the evolving 
types are written before the “:”. For instance: 

- A signal split into non-regular frames: 
"Vt:a", 

- The autocorrelation peaks on each frame: 
“VVa” 

4.1.3. Operators typing rules 

The operations in EDS transform physically the 
data, and can therefore be specified using the 
typing system. For each operator, we define typing 
rules that provide the type of its output data, 
depending on the types of its input data. The 
typing rules are usually reduced into a 
dimensionality rule and a transformation rule. 
 
Example 1: Absolute value 
The “Absolute value” operation does not change 
the physical dimension of the data. Its typing rules 
are: 

- no evolving dimension needed 
- input type “T” � output type “|T|”,  
with |a|=a, |t|=t, |f|=f. 
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For instance, “Abs” transforms: 
- a set of amplitudes (“Va”) into another (“Va”) 
- a spectrum (“f:a”) into another spectrum 
(“f:a”) 

 
Example 2: Spectrum 
The “Spectrum” operation transforms a signal of 
type “t:a” into a frequency spectrum of type “f:a”, 
and transforms a frequency spectrum “f:a” into a 
data of type “t:a”, homogeneous with a signal. 
More generally, the “Spectrum” operation inverses 
the physical type of an evolving dimension. Its 
typing rules are: 

- at least 1 evolving dimension 
- input evolving type “T” � output evol type “T-

1”, with a-1=a, t-1=f, f-1=t. 
For instance, “Spectrum”: 

- transforms a set of signals (“Vt:a”) into a set of 
spectrums (“Vf:a”) 
- cannot handle temporal onsets (“Vt”) 

 
Example 3: Split 
The “Split” operation allow observing a data on 
regular observation windows. Thus “Split” adds a 
new evolving dimension, and its typing rules are: 

- at least 1 evolving dimension 
- input evolving type “T” � output evolving 
type “TT”: addition of an evolving dimension. 

For instance, “Split” transforms: 
- a signal (“t:a”) into a set of signals (“tt:a”) 
- a set of time values (“Vt”) into multiple sets of 
time values (“VVt”) 

 
This typing system is more complex than the usual 
typing systems used routinely in Genetic 
Programming, but has the interest of being able to 
retain the respective physical dimensions of the 
inputs and outputs values of all the operations in a 
function. For instance, the following complex but 
realistic function handles the following data types: 
Mina (Maxt:a (Sqrttf:a (FFTtf:a (Splittt:a 

(InSignalt:a))))), and thus provides as final output 
one amplitude value “a” from a given input signal 
InSignal “t:a”. 

4.1.4. Controlling general processing 
methods using generic operators and 
patterns 

The types of data handled by a function are a 
signature of the general processing methods used 
in the function. For instance, if an operation in the 
function provides data of type “f:a” (homogeneous 
to a spectrum), this means that the following 
operations are computed in the spectral domain. 

In order to control globally the processing methods 
through the successive types of data handled by the 
functions, we have introduced "generic operators" 
that stand for one or several random real 
operator(s) whose output types are forced.  
EDS can deal with three different generic operators 
(notated "*", "!", and "?") that have different 
functionalities: 
 
"?_T" stands for one operation providing an output 
type "T". 
For instance, “?_a(Signal)” can be implemented as: 
- “Maxa(Signalt:a)”, or  
- “Variancea(Signalt:a)”. 

 
"*_T" stands for a composition of several 
operations that all provide an output type “T”. 
For instance, “*_a(Signal)” can be implemented 
as: 
- “Squarea (Maxa (Signalt:a))”, or  
- “Loga (Squarea (Variancea (Signalt:a)))”. 
 
"!_T" stands for a composition of several operators 
that provide a final output type "T". 
For instance, “!_a(Signal)” can be implemented as: 
- “Variancea (Autocorrelationt:a (Signalt:a))”, or 
- “Mina (Maxt:a (Ffttf:a (Splittt:a (Signalt:a))))”. 
 
 
These generic operators allow specifying locally 
the processes to use in a function. By composing 
them to write functions patterns, we describe a 
global set of processes to apply on an audio signal 
to obtain a final value. For instance, the simple 
pattern  
"?_a (!_Va (Split (*_t:a (Signal))))" 
is a translation of the general extraction scheme 
presented in 3.1, standing for the following 
processes: 
- « Apply some transformations on the input signal 
in the temporal domain » (*_t:a) 
- « Split the resulting signal into frames » (Split) 
- « Find a vector of characteristic values - 1 for 
each frame » (!_Va) 
- « Find one operation to find one relevant 
characteristic value for the entire signal » (?_a) 
 
There are various ways to instantiate this pattern, 
among which: 
- Suma (SquareVa (MeanVa (SplitVt:a (HpFiltert:a 

(Signalt:a, 1000Hz))))), or 
- Log10a (Variancea (NPeaksVa (SplitVt:a 
(Autocorrelationt:a (Signalt:a))))) 
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Patterns are specified in the EDS algorithm in 
order to guide the search of functions. The simplest 
pattern to specify is “!_a”, that means “a function 
made of any composition of operators providing one 
non-dimensional or amplitude value as final output”. 

4.1.5. Heuristics 

 
The system is able to build physically correct 
functions by specifying signal processing patterns. 
However, the physical correctness is not sufficient 
to build relevant functions, by choosing the 
optimal operations to solve a given description 
problem. 
In order to guide the instantiation of the patterns, 
we need to introduce knowledge in the system, as 
signal processing heuristics. Indeed, heuristics are 
a central point in the design of EDS. They 
represent the know-how of signal processing 
experts, about functions seen a priori, i.e. before 
their evaluation. The interest of heuristics is that 
they both favor a priori interesting functions, and 
rule out obviously non-interesting ones. 
A heuristic in EDS associates a score to a potential 
composition of operators, between 0 (forbidden 
composition) and 10 (very recommended 
composition). These scores are used when EDS 
builds a new function, to select the candidates 
between all the possible operations. Basically, the 
heuristics allow to: 
 

- Control the structure of the functions 
For instance the number of operations done to 
compute the cut-off frequency argument for a 
high-pass filter  
“HpFilter (InSignal, CutOffFreq)”  
can be controlled using the heuristic  
“HpFilter (Signal, Branch) => SCORE = Max (0, 5 
- Size(Branch))" 
The filtering operation will be scored 5 if the cut-
off frequency is a constant value, 4 if it is the 
result of one operation, and so on. 
 

- Avoid bad combination of operations 
For instance, multiple high-pass filters are avoided 
using the heuristic  
"HpFilter (HpFilter => SCORE = 1", labeling two 
consecutive high-pass filtering as a very bad 
composition of operations, 
Similarly, filter combination rules can be 
translated to the following heuristics  
"MpFilter(HpFilter=>3", "LpFilter(HpFilter=>5", 
etc. 
 

- Range constant parameters values 
For instance, the following heuristic 
"Envelope (x, <50 frames) => SCORE = 1" 
rules the size of the window when computing an 
envelope, and 
"HpFilter (x, <100Hz) => 1" 
rules the cut-off frequency value of a filter. 
 

- Avoid usually useless operations 
For instance the heuristic "X (X (X => SCORE = 
2" avoids too many repetitions of operators:, etc. 

4.1.6. Automatic construction of functions 
using patterns, typing rules, and 
heuristics 

Using all the previous rules, EDS is able to build 
automatically various physically correct functions 
from a given signal processing pattern. 
The pattern is composed of one input signal, and 
several generic operators, real operators, several 
numeric values, and constant signals. 
The automatic synthesis of functions is performed 
in bottom-up fashion, starting from the input 
signal, and grafting sequentially the operators one 
after the other up to the top of the tree, all the 
generic operators being instantiated, i.e. replaced 
by real operators (as presented in 4.1.4.). 

4.2. Search for optimized features 

Once the system has built functions with a correct 
type, it evaluates them and tries to improve their 
fitness to solve the description problem. 

4.2.1. Evaluation of function fitness 

To evaluate if a function is relevant, the system 
computes this function on the whole learning 
database that defines the description problem, and 
then compares the values obtained with the labels of 
the signals, to check if the former can explain the 
latter. Different fitness functions can be computed, 
depending on the nature of the descriptor. In our 
experiments with regression problems, we compute 
fitness as the Pearson correlation coefficient between 
the function values and the perceptive values ([14]). 
For classification problems, we use the Fisher’s 
criterion ([14]) for the function values on the 
different class labels, which evaluates how well the 
function discriminates between the different classes. 
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The system uses then the fitness of the functions as a 
criterion in the search algorithm, to find relevant 
functions for the problem to solve. 

4.2.2. Genetic Search Algorithm 

The function search part in EDS consists in 
building signal processing functions that are 
increasingly relevant, using an algorithm based on 
genetic programming, i.e. the application of 
genetic search to the world of functions, as 
introduced by [10].  
 
Given a description problem for which we seek an 
extractor, defined by a database DB containing 
labeled audio signals (numeric values or class 
labels), the algorithm builds a population of 
functions from a pattern P, and tries to improve 
them by applying various genetic transformations 
on them. 
 
More precisely, the algorithm works as follows: 
 

1. Build the first population P0, of random 
functions based on the pattern P 

2. Compute the fitness of each function in the 
population 

3. If (Stop Condition): STOP the algorithm, 
and RETURN the best function 

4. Else: select the functions with the highest 
fitness, and create of a new population Pi+1, 
by applying transformations on them 

5. Iteration to (2) 
 
The “Stop Condition” is specified using various 
combined criteria:  

- Maximum number of iteration reached: 
the search stops automatically after 
population number 1000. 

- A relevant function is found: fitness >= 
threshold; typically threshold=1, the 
function itself is a perfect model of the 
descriptor. 

- The population does not improve 
anymore: fitness of the best function of 
population Pi = fitness of the best function 
of population Pi-N; typically N=5 
unimproved populations. 

 
Running this algorithm once provides one optimal 
function to be used in the final model. 
 
Therefore, this algorithm is run N times to build N 
optimized functions constituting the final feature 
set used in the final model of the descriptor. 

4.2.3. Creation of populations by genetic 
transformations 

During the genetic search, each new population is 
created by applying various genetic 
transformations on the most relevant functions of 
the current population. These transformations aim 
at reusing local operations found in relevant 
functions, in order to build even more relevant 
functions. Three main transformations are used in 
EDS: structural cloning, mutation, and crossover. 
 
Structural cloning consists in keeping the tree 
structure a function and applying variations on its 
constant parameters, such as the cut-off 
frequencies of filters or the computation window 
sizes.  
For example, the function  
"Sum (Square (FFT (LpFilter (Signal, 1000Hz))))" 
can be cloned as  
"Sum (Square (FFT (LpFilter (Signal, 800Hz))))". 
 
Mutation consists in cutting a branch of a function, 
and replacing it by another composition of 
operators providing a data of the same type.  
For example, the function  
"Sum (Square (FFT (LpFilter (Signal, 1000Hz))))",  
can be mutated into  
"Sum (Square (FFT (MpFilter (Signal, 1100Hz, 
2200Hz))))". 
 
Finally, crossover consists in cutting a branch from 
a function and replacing it by a branch cut from 
another function.  
For example 
"Sum (Square (FFT (LpFilter (Signal, 1000Hz))))" 
and "Sum (Autocorrelation (Signal))" 
can produce the crossover function  
"Sum (Square (FFT (Autocorrelation (Signal))))". 
 
In addition to the genetically transformed 
functions, the new population is completed with a 
set of new random functions to ensure its diversity 
and introduce new operations. 

4.2.4. Improvement of the search 

Eventually, in order to search for function more 
efficiently, rewriting rules and a caching mechanism 
have been included in the system. 
 
Rewriting rules are applied to simplify functions 
before their evaluation, using a fixed point 
mechanism until to obtain a normal form. Unlike 
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heuristics, they are not used by the genetic 
algorithm to favor combinations, but they: 

- Avoid computing several times the same 
function with different but equivalent forms. 

For example: 
"Correlation(x,x)==>Autocorrelation(x)", or 
"HpFilter(HpFilter(x,a),b) 

==>HpFilter(x,max(a,b))" 
 

- Reduce the computation cost. 
For Example: Perseval equality  
"Mean(Fft(Square(x))) => Sum(Square (x))"  
avoids to compute the "Fft" of a signal. 
 
Finally, a caching mechanism is introduced to 
speed up the computation of functions, so that any 
costly function is computed once, and reused when 
possible.  
Every time a new function is computed, all the 
intermediate results are stored on separate files. 
Finally, the most useful results are kept in 
memory, depending on: 

- their computation time: results that require a 
long computation time are kept in memory, 

- their utility: results that are used frequently are 
kept, 

- their size: the allowable memory being 
limited, priority is given to small size results. 

For instance: the computation of 
"Max (Envelope (Fft (x), 100)"  
will store  
"x", "100", "Fft(x)", "Envelope (Fft (x), 100)", and 
"Max (Envelope (Fft (x), 100)" for each tested 
title. 

4.3. Final model of the descriptor 

After running the genetic search, EDS finds 
relevant features well adapted to the description 
problem at hand.  
These features have now to be combined into an 
optimized model of the descriptor, using generic 
machine learning techniques (k-Nearest 
Neighbours,  Neural Networks); the techniques can 
also be specific to regression (Linear Regression, 
Model Tree, Locally Weighted Regression) or to 
classification (Decision Tree, Rule Learner, Naïve 
Bayes, Holte’s one-R, Kernel Density Classifier, 
Support Vector Machine, Logistic Regression, 
Gaussian Mixture Models). Each of these models 
carries with it a certain number of parameters such 
as the number of neighbours in the k-NN method, 
or the number of layers for the Neural Networks. 

The processes of 1) selecting the right model and 
2) finding the right parameters for this model are 
entirely automated in EDS. 
 
The optimization of the model consists in a 
complete automatic search on all the available 
models for all the available parameters values. The 
system evaluates the performance of the models by 
cross-validation on the learning database, using 
various evaluation criteria such as the rate of good 
classifications, the correlation coefficient, or the 
kappa statistic ([14]). 
The final descriptor model is the best model found, 
defined by: 

- a set of relevant features 
- a modelling technique 
- optimized parameters for this technique 
- a learning database DB 

For instance it can be: 
“DescriptorModel = KNN (“Max (Fft (InSignal))”, 
“Variance (Autocorrelation (LpFilter (InSignal, 
1000Hz)))”, 6 neighbours, DB)”. 
 
The performance of this model is evaluated on a 
test database (different from the learning database) 
for assessing definitively its performance. 

4.4. Self-executable extractor for the 
modelled descriptor 

To compute the descriptor’s value on a new audio 
signal, a executable program that computes the 
final model on a .wav signal is generated 
automatically. This program computes the values 
of the features, then computes the model with these 
values as inputs, and finally saves the result (the 
value of the descriptor) in an output file. 

5. PERFORMANCE OF THE SYSTEM 

We present here the performance on the two steps 
of EDS:  
- Automatic synthesis of relevant features: the 
fitness of the best functions found indicates the 
capacity of the genetic search algorithm to build 
relevant functions regarding a given dataset. 
- Descriptor modeling: the quality of the model is 
evaluated on a test database (see 4.3). 
We compare here the results obtained by the 
traditional method using the Mpeg7 LLDs dataset 
(called “LLDs”), and by the EDS method on the 
following problems: basic frequency extraction, 
singing voice detection, musical energy modeling, 
and discrimination of natural sounds recorded 
indoor or outdoor. 
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5.1. Basic problem: Sinus + Colored noise 

The problem consists in detecting a sinus between 
10 and 1000Hz mixed with a strong colored noise 
between 1000-2000Hz, as described in Section 2.2. 
 
Features 
 
As they focus on the most predominant 
characteristic of the signal (the noise), the LLDs 
yield poor results in detecting the sinus. The best 
LLD, Spectral Flatness, has a correlation of 0.63 
with the sinus frequencies. 
After 10 populations of genetic search, EDS 
focuses around the function "MaxPos (FFT 
(LpFilter (Signal, fc Hz)))", with different values 
of fc, between 50 and 700 Hz. All these values 
remove efficiently the colored noise (with a 
Butterworth filter), and provide a correlation of 
0.99. The correlation does not reach 1 because of 
the uncertainty near 1000Hz. 
 
Model 
 
The linear modeling of provides a mean prediction 
error of 226Hz for the LLD (Spectral Flatness), 
whereas it is 10Hz for the best EDS function. 
 
These results shows that our system is able to find 
automatically a correct and almost optimal 
preprocessing with the correct parameters (here, 
filter ranges) to solve a simple description problem 
that LLDs cannot successfully address. 

5.2. Subjective problem: Musical energy 

The problem consists in providing a model of the 
subjective energy of musical extracts, based on the 
results of perceptive tests (see [11]). This 
descriptor addresses the intuitive difference there 
is, for example, between a punchy punk-rock song 
with loud saturated guitars and screaming voice 
conveys and an acoustic guitar ballad with a soft 
voice, at a constant volume level.  
 
The tests conducted consisted in asking users to 
label musical extracts of various genres with the 
energy they “felt” while listening to the extract, 
independently of the listening volume. The 
statistical analysis of the results of these perceptive 
tests has shown that the musical energy is a 
consensual concept, and that most users feel the 
same energy while listening to the same songs, 
with a of 10 % statistical variance. 
 

We then built a model of this “musical energy”, 
using two labeled databases of 200 signals of 
length 5s at 11025Hz, one for learning, and the 
other for testing the performance of the model. 
 
Features 
 
The best LLD found was “Sum (Fft (Testwav))”, 
with correlation=0,5418815 with the learning 
database labels, and 0,668248859 with the test 
database. 
After running EDS feature genetic search 
algorithm 50 times, 86% of the functions created 
by EDS are better than the best LLD function on 
the learning database “Sum (Fft (Testwav))”, and 
46% on the test database. The best function found 
by EDS is “Sqrt (Percentile (Sqrt (Derivation (Sqrt 
(Peaks (Sqrt (Fft (Hann (LpFilter (Testwav, 
5387.0)))))))), 75.0))”, with correlation=0,765 on 
learn, and 0,812 on test. 
 
The better performance of the features on the test 
database shows the generalization capacity of 
EDS, that has been able to find general features 
even though the learning database was not very 
well labeled. 
 
Model 
 
After running a forward features selection ([14]) on 
the LLDs, we kept 11 features to build the final 
LLD model of musical energy. The best method 
found was a linear regression with M5 selection, 
that provided a correlation=0.6735 on learn, and 
0.7824 on test. 
Running the same model with only the best EDS 
function provided a correlation=0.763 on learn and 
0.8172 on test. Thus this only function was better 
than a combination of all LLDs. 
After running a forward selection on the EDS 
functions, we kept 4 features to build the final EDS 
model of musical energy. The best method found 
was a locally weighted regression with 2 neighbors 
and linear weighting, that provided a 
correlation=0.7933 on learn, and 0.8246 on test, 
which corresponds to an average model error of 
11.4%. 
 
Considering the 10% variance on the perceptive 
tests, it can be said that EDS has provided an 
almost optimal model of this descriptor. 
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5.3. Objective classification problem: 
Presence of singing voice 

The problem consists in providing a model that 
allows detecting the presence of singing voice in 
polyphonic audio signals, which is known as being 
a difficult description issue (see [12], [13]). 
 
To compute this model, we have built two 
databases of 200 audio signals of length 5s at 
11025Hz (for learning and testing), labeled with 
the 2 classes “Voice” and “No Voice”. 
 
Features 
 
The best LLD found was also “Sum (Fft 
(Testwav))”, with fisher=0,306 with the learning 
database labels, and 0,216 with the test database. 
After running EDS feature genetic search 
algorithm 50 times, 60% of the functions created 
by EDS are better than the best LLD function 
“Sum (Fft (Testwav))”, and 56% on the test 
database. The best function found by EDS is 
“Power (Abs (Sum (Integration (Integration (Fft 
(Sqrt (BpFilter (Sqrt (BpFilter (Sqrt (BpFilter 
(Testwav, 739.0, 92.0)), 238.0, 804.0)), 295.0, 
1160.0))))))), 3.0)”, with fisher=0,924 on learn, 
and 0,785 on test. 
 
Model 
 
After running a forward selection on the LLDs, we 
kept 3 features to build the final LLD model of 
musical energy. The best method found was a 
Holte’s one-R with 13 objects in bucket, that 
provided a kappa=0.52 (76% of good 
classification) on learn, and 0.41 (70.5%) on test. 
Running the same model with only the best EDS 
function provided a kappa=0.62 (81% of good 
classification) on learn and also 0.62 (81%) on test. 
Thus this only function was better than a 
combination of all LLDs. 
After running a forward selection on the EDS 
functions, we kept 6 features to build the final EDS 
model of musical energy. The best method found 
was a Holte’s one-R with 7 objects in bucket, that 
provided a kappa=0.68 (84% of good 
classifications) on learn, and only 0.62 (76%) on 
test. 
 
The fact that the best EDS function alone provides 
a better test performance than the 6 best EDS 
functions shows that some functions generated are 
probably too specialized, and that a precise model 
built on these functions is too close to the learning 

database to provide good general results. Thus a 
balance has to be found between model precision 
and generalization. 

5.4. Classification problem with small 
databases: Indoor/Outdoor sounds 

The problem consists in providing a model that 
allows discriminating between natural sounds 
recorded outdoor or indoor. 
To compute this model, we have built two 
databases of 50 audio signals of length 1s at 
11025Hz (for learning and testing), labeled with 
the 2 classes “Indoor” and “Outdoor”. 
 
Features 
 
The best LLD found was also “High-Frequency-
Content (Testwav)”, with fisher=0.224 with the 
learning database labels, and 0,206 with the test 
database. 
After running EDS feature genetic search 
algorithm 30 times, 100% of the functions created 
by EDS are better than the best LLD function 
“High-Frequency-Content (Testwav)”, on the 
learning and on the test database. The best function 
found by EDS is “Median (Holes (BpFilter 
(Triangle (Testwav), 312.0, 4640.0)))”, with 
fisher=1.277 on learn, and 1,023 on test, which is 
far better than the best LLD. 
 
Model 
 
After running a forward selection on the LLDs, we 
kept 6 features to build the final LLD model of 
musical energy. The best method found was a kNN 
with 2 neighbours, that provided a kappa=0.85 
(92.5% of good classification) on learn, but only 
0.56 (78%) on test. 
Running the same model with only the best EDS 
function provided a kappa=0.77 (88.8% of good 
classification) on learn, and still 0.75 (87%) on 
test. After running a forward selection on the EDS 
functions, we kept 6 features to build the final EDS 
model of musical energy. The best method found 
was a kNN with 3 neighbours, that provided a 
kappa=0.94 (96.3% of good classifications) on 
learn, and still 0.84 (92.5%) on test. 
 
These results shows the consistency of the features 
found by EDS on small databases, compared to the 
LLDs whose models are too specific because they 
have to compensate the low relevancy of the 
features. 
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6. CONCLUSION 

We have introduced a new approach for designing 
automatically efficient extractors for high-level 
audio descriptors. Although the proposed system, 
EDS, uses for the moment a limited palette of 
signal processing functions, it already produces 
results that are better than results obtained using 
standard manual approaches in high level 
descriptor extraction, in particular using the Mpg7 
palette of generic features.  
The generality of the approach allows EDS to 
address the whole class of extraction problems in 
the large, including the distinction between “live” 
and studio recording, the discrimination between 
simple and generic genres, the modeling of music 
danceability or percussivity, etc. The application of 
the system to non high-level extraction audio 
problems is also under way. Substantial increase in 
performance is expected by extending the palette 
of signal operators to more refined operators, as 
well as in adding more refined heuristics and 
rewriting rules to prune the search space. 
Finally, a programming language based on EDS 
constructs is under way to allow users more 
flexibility in the definition and exploitation of the 
descriptors obtained. 
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