
Audio Engineering Society

Convention Paper
Presented at the 116th Convention
2004 May 8–11 Berlin, Germany

This convention paper has been reproduced from the author's advance manuscript, without editing, corrections, or consideration
by the Review Board. The AES takes no responsibility for the contents. Additional papers may be obtained by sending request
and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org.
All rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the
Journal of the Audio Engineering Society.

Automatic extraction of music descriptors
from acoustic signals using EDS

Aymeric Zils1, François Pachet1

1 Sony CSL Paris, 6 rue Amyot 75005 Paris, France
{zils, pachet}@csl.sony.fr

ABSTRACT

High-Level music descriptors are key ingredients for music information retrieval systems. Although there is a long
tradition in extracting information from acoustic signals, the field of music information extraction is largely heuristic
in nature. We present here a heuristic-based generic approach for extracting automatically high-level music
descriptors from acoustic signals. This approach is based on Genetic Programming, used to build relevant features as
functions of mathematical and signal processing operators. The search of relevant features is guided by specialized
heuristics that embody knowledge about the signal processing functions built by the system. Signal processing
patterns are used in order to control the general processing methods. In addition, rewriting rules are introduced to
simplify overly complex expressions, and a caching system further reduces the computing cost of each cycle.
Finally, the features build by the system are combined into an optimized machine learning descriptor model, and an
executable program is generated to compute the model on any audio signal. In this paper, we describe the overall
system and compare its results against traditional approaches in musical feature extraction à la Mpeg7.

1. INTRODUCTION

The exploding field of Music Information Retrieval
has recently created extra pressure to the community
of audio signal processing, for extracting
automatically high level music descriptors. Indeed,
current systems propose users with millions of music
titles (e.g. the peer-to-peer systems such as Kazaa)
and query functions limited usually to string
matching on title names. The natural extension of
these systems is content-based access, i.e. the
possibility to access music titles based on their
actual content, rather than on file names. Existing

systems today are mostly based on editorial
information (e.g. Kazaa), or metadata which is
entered manually, either by pools of experts (e.g.
All Music Guide) or in a collaborative manner (e.g.
MoodLogic). Because these methods are costly and
do not allow scale up, the issue of extracting
automatically high-level features from acoustic
signals is key to the success of online music access
systems.
Extracting automatically content from music titles
is a long story. Many attempts have been made to
identify dimensions of music that are perceptually
relevant and can be extracted automatically. One of
the most known is tempo or beat. Beat is a very

Zils et al. EDS: Automatic extraction of music descriptors

AES 116th Convention, Berlin, Germany, 2004 May 8–11

Page 2 of 12

important dimension of music that makes sense to
any listener. [1] introduced a beat tracking system
that successfully computes the beat of music
signals with good accuracy.
There are, however, many other dimensions of
music that are perceptually relevant, and that could
be extracted from the signal. For instance, the
presence of voice in a music title, i.e. the
distinction between instrumentals and songs is an
important characteristic of a title. Another example
is the perceived intensity. It makes sense to extract
the subjective impression of energy that music
titles convey, independently of the RMS volume
level: with the same volume, a Hard-rock music
title conveys more energy than, says, an acoustic
guitar ballad with a soft voice. There are many
such dimensions of music that are within reach of
signal processing: differentiate between “live” and
studio recording, recognize typical musical genres
such as military music, infer the danceability of a
song, etc. Yet this information is difficult to
extract automatically, because music signals are
usually highly complex, polyphonic in nature, and
incorporate characteristics that are still poorly
understood and modeled, such as transients,
inharmonicity, percussive sounds, or effects such
as reverberation.

2. THE TRADITIONAL METHOD

2.1. Combination of Low-Level Descriptors

Typically, the design of a descriptor extractor
consists in combining Low-Level Descriptors
(LLDs) as relevant characteristics of acoustic
signals (features) using machine learning
algorithms. More precisely, the traditional
approach in descriptor design is the following (see,
e.g. [2], [3], [4]):
Firstly, the signals of a reference database are
labeled with the descriptor’s values. These values
can be obvious to get (e.g. Presence of singing
voice), or can require the use of perceptive tests
(e.g. the global energy of musical extracts). In this
latter case humans are asked to enter a value for
the descriptor, and then statistical analysis is used
to find the average values considered thereafter as
grounded truth.
Secondly, several features of the associated audio
signals are computed. A typical reference for audio
signal features is the Mpeg7 standardization
process [5], that proposes a battery of LLDs for
describing basic characteristics of audio signals.
The purpose of Mpeg7 is not to solve the problem

of extracting high level descriptors, but rather to
propose a basis to design such descriptors.
Eventually, the most relevant features, i.e. that best
map with the labels or values of the signals, are
selected and combined into machine learning
processes, to provide an optimal model for the
descriptor.

2.2. Limitation of the traditional method

The traditional method sketched above works well
only for relatively easy problems; problems for which
generic low level features are adapted. However,
generic features can only extract information which is
“predominant” in the signal, and are, by definition,
unable to focus on specific, problem-dependent
properties. The core assumption of this paper is
precisely that in order to solve more difficult
problems one needs specific features adapted to the
problem at hand. The following problem illustrates
this claim.

A simple example: Sinus + Colored Noise

Let us consider the problem of detecting a sinus wave
in a given frequency range (say 0-1000Hz) mixed
with a powerful colored noise in another frequency
range (1000-2000Hz). As the colored noise is the
most predominant characteristic of the signal, generic
features such as Mpeg7’s are unable to detect the
hidden sinus. For instance, when we look at the
spectrum of a 650Hz sinus mixed with a 1000-
2000Hz colored noise (fig.1), the peak of the sinus is
visible but not predominant, and is thus impossible to
extract automatically using a generic feature.

Fig 1: Spectrum of a 650Hz sinus mixed with

1000-2000Hz colored noise

Zils et al. EDS: Automatic extraction of music descriptors

AES 116th Convention, Berlin, Germany, 2004 May 8–11

Page 3 of 12

Of course, this problem is easy to solve by hand,
for instance by applying a pre-filtering to the
signal that cuts off the frequencies of the colored
noise, so that the sinus emerges from the spectrum,
and becomes a predominant property (see Fig. 2).

Fig 2: Spectrum of a 650Hz sinus mixed with
1000-2000Hz colored noise, pre-filtered by a

1000Hz Low-Pass Filter

This basic example illustrates the fact that
combinations of basic LLDs cannot cover a
function space wide enough to find specialized
extractors. Indeed, we claim that high-level
descriptor can be obtained by some linear
combination of basic LLDs. An automatic system
that produces extractors has to be able to search in
a larger function space, as experts in signal
processing normally do. Such a search space has to
include not only actual operators but also
compositions thereof as well as all the possible
“in-between” processes such as filters or peak
extractions inserted to improve the efficiency of an
extractor.

3. IMPROVING TRADITIONAL LLD
COMBINATION USING AUTOMATIC
OPERATORS COMPOSITION

The design of specific features that are relevant for a
given description problem is usually done by hand by
signal processing experts. This section introduces the
idea of generating automatically such specific
features adapted to a particular problem.

3.1. Motivation for an automatic system for
descriptors extraction

Although there is no known general paradigm for
designing domain-specific features, their design
usually follows some sort of patterns. One of them

consists in filtering the signal, splitting it into
frames, applying specific treatments to each
segment, then aggregating all these results back to
produce a single value.
This is typically the case of the beat tracking
system described in ([1]), that can schematically be
described as an expansion of the input signal into
several frequency bands, followed by a processing
of each band, and completed by an aggregation of
the resulting coefficients using various aggregation
operators, to yield eventually a float representing
(or strongly correlated to) the tempo. The same
applies to timbre descriptors proposed in the music
information retrieval literature ([6], [7]) an more
generally to most audio descriptors described in
the literature.
Of course, this global scheme of
expansion/reduction is under specified, and an
infinite number of such schemes could be
envisaged. Our goal is therefore to design a system
that is able to 1) search automatically relevant
signal processing features, seen as compositions of
functions and build a model of the descriptor and
2) reduce the search space significantly using
generic knowledge on signal processing operators.

3.2. Definition of a description problem

In the context of an automatic modeling of
descriptors from numeric signals, the definition of the
description problems handled by the system has to
remain simple to preserve the generality of the
approach. One simple way to define a description
problem is to use the supervised learning approach: a
set of labeled signals, also called learning database,
defines the description problem. These labels are
either numeric values, such as an evaluation of their
“musical energy” (between 0 and 1), or a class label,
such as the “presence of a singing voice” or not, or
the genre chosen in a given taxonomy. The system
will then finds the rules of the labeling of the signals,
i.e. the model of the descriptor, by designing a
function which produces outputs as close as possible
to the learning database.

3.3. General Principle of the “Extractor
Discovery System” (EDS)

The key idea of our approach is to substitute the
combination of basic LLDs by the composition of
signal processing operators: our system EDS
composes automatically operators to discover
features as signal processing functions that are
optimal for a given descriptor extraction task.

Zils et al. EDS: Automatic extraction of music descriptors

AES 116th Convention, Berlin, Germany, 2004 May 8–11

Page 4 of 12

The global architecture of EDS, illustrated in
Figure 3, consists in two parts: modeling of the
descriptor and synthesis of the extractor. Both
parts are fully automatic and lead eventually to an
extractor for the descriptor.

Fig. 3: Global Architecture of EDS

The modeling of the descriptor is the main part of
EDS. It consists in searching automatically for a
set of relevant features using the genetic search
algorithm, and then to search automatically for the
optimal model for the descriptor, that combines
these features.
The search for specific features is based on genetic
programming, a well-known technique for
exploring search spaces of function compositions
(see [8]). The genetic programming engine

composes automatically signal processing
operators to build arbitrarily complex functions.
Each built function is given a fitness value which
represents how well the function performs to
extract a given descriptor on a given learning
database.
The evaluation of a function is very costly, as it
involves complex signal processing on whole
audio databases. Therefore, to limit the search, a
set of heuristics are introduced to improve the a
priori relevance of the created functions, as well as
rewriting rules to simplify functions before their
evaluation.
Once the system has found relevant features, it
combines them to feed them into various machine
learning models, and then optimizes the model
parameters.
The synthesis part consists in generating an
executable file to compute the best model on any
audio signal. This program allows computing this
model on arbitrary audio signals, to predict their
value for the modeled descriptor.

4. EDS TECHNICAL DESCRIPTION

We describe here the three main ingredients of the
EDS system: the automatic construction of signal
processing functions, the adaptation of these
functions for a given descriptor, and the combination
of those into a general descriptor model.

4.1. Automatic construction of features

Functions are represented in EDS as compositions
of basic operations applied on an arbitrary input
audio signal. The automatic construction of correct
functions relies on the control of the types of data
handled by the functions, and on the introduction
of signal processing expertise as heuristics.

4.1.1. Representation of functions as signal
processing operators trees

The basic operators used by EDS can be
mathematical, such as taking the mean values of a
set, or can process a signal, temporally (such as
correlation), or spectrally (such as a low-pass
filtering). In addition, some operations are
parameterized using constant values (like cut-off
frequencies), or external signals (for example a
correlation with another, fixed, reference signal).
To account for the specificity of audio extraction,
we also introduced operators to implement the
global extraction schemes, such as described in
3.1. For instance, the Split operator splits a signal

Extractor
Synthesis

Genetic
Search for
Relevant
Features

Descriptor
Model

Optimization

Test
Signals

Database

Learning
Signals

Database
Temporal
Aggregation

Model
Performance

Descriptor
Extractor

Optimal
Descriptor

Model

Descriptor
Modeling

Zils et al. EDS: Automatic extraction of music descriptors

AES 116th Convention, Berlin, Germany, 2004 May 8–11

Page 5 of 12

into frames, an operation that is routinely
performed when a given treatment has to be made
on successive portions of the signal.

The functions built by composing these operators
have to contain at least one argument labeled
InSignal, which is instantiated with a real audio
signal before the evaluation of the function. Figure
4 shows an example of the syntactic representation
for a function that is a composition of basic
operators (FFT, Derivation, Correlation, Max):

Fft(Derivation(InSignal), Max(Correlation

(InSignal, Constant_Signal))

<==>
F f t

D e r i v M a x

I n p u t S i g n a l C o r r e l a t i o n

I n S i g n a l C o n s t a n t _ S i g n a l

Fig. 4: The syntactic tree of a function in EDS

4.1.2. Data Types

The need for typing is well-known in Genetic
Programming, to ensure that the functions
generated are at least syntactically correct.
Different type systems have been proposed for GP,
such as strong typing ([9]) that mainly differentiate
between the “programming” types of the inputs
and outputs of functions.
In our context, the difference between the
programming types floats, vectors, or matrix, is
superficial. For example, the operator "Abs"
(absolute value) can be applied on a float, a vector,
etc. This homogenous view of values yields
simplicity in the programming code, which we
need to retain.
However, to control the physical processes in EDS,
we need to distinguish how the functions built by
the system handle the data, at the level of their
“physical dimension”. For instance, audio signals
and spectrum can be seen both as vectors of floats
from the usual typing perspective, but they are
different in their dimensions: a signal is a time to
amplitude representation, while a spectrum
associates frequency to amplitude. Thus, these data
have to be processed differently. Our typing
system, based on the following constructs,
represents this difference, to ensure that our
resulting functions make sense.

Using only three physical dimensions (time “t”,
frequency "f", and amplitudes or non-dimensional
data “a”), we are able to represent most of the data
types handled by the system, by building atomic,
vector, and functional types.

 “Atomic” types describe the physical dimension
of a single value. For instance:

- Position of a drum onset in a signal: “t”,
- Cut-off frequency of a filter: “f”,
- Amplitude peak in a spectrum: “a”.

“Functional” types represent data of a given type,
which are evolving in a dimension of another type.
The evolution type is separated from the data type
using the ":" notation. For instance:

- Audio signal (amplitude evolving in time):
"t:a",

- Spectrum (amplitude evolving in
frequency): "f:a".

“Vector” types, notated “V”, are special cases of
functions, used to specify the types of
homogeneous sets of values without dimensional
evolution. For instance:

- Temporal positions of the autocorrelation
peaks of an audio signal: “Vt”

- Amplitudes of these autocorrelation peaks:
“Va”.

In the case of functional data with multiple
evolving or vector dimensions, all the evolving
types are written before the “:”. For instance:

- A signal split into non-regular frames:
"Vt:a",

- The autocorrelation peaks on each frame:
“VVa”

4.1.3. Operators typing rules

The operations in EDS transform physically the
data, and can therefore be specified using the
typing system. For each operator, we define typing
rules that provide the type of its output data,
depending on the types of its input data. The
typing rules are usually reduced into a
dimensionality rule and a transformation rule.

Example 1: Absolute value
The “Absolute value” operation does not change
the physical dimension of the data. Its typing rules
are:

- no evolving dimension needed
- input type “T” � output type “|T|”,
with |a|=a, |t|=t, |f|=f.

Zils et al. EDS: Automatic extraction of music descriptors

AES 116th Convention, Berlin, Germany, 2004 May 8–11

Page 6 of 12

For instance, “Abs” transforms:
- a set of amplitudes (“Va”) into another (“Va”)
- a spectrum (“f:a”) into another spectrum
(“f:a”)

Example 2: Spectrum
The “Spectrum” operation transforms a signal of
type “t:a” into a frequency spectrum of type “f:a”,
and transforms a frequency spectrum “f:a” into a
data of type “t:a”, homogeneous with a signal.
More generally, the “Spectrum” operation inverses
the physical type of an evolving dimension. Its
typing rules are:

- at least 1 evolving dimension
- input evolving type “T” � output evol type “T-

1”, with a-1=a, t-1=f, f-1=t.
For instance, “Spectrum”:

- transforms a set of signals (“Vt:a”) into a set of
spectrums (“Vf:a”)
- cannot handle temporal onsets (“Vt”)

Example 3: Split
The “Split” operation allow observing a data on
regular observation windows. Thus “Split” adds a
new evolving dimension, and its typing rules are:

- at least 1 evolving dimension
- input evolving type “T” � output evolving
type “TT”: addition of an evolving dimension.

For instance, “Split” transforms:
- a signal (“t:a”) into a set of signals (“tt:a”)
- a set of time values (“Vt”) into multiple sets of
time values (“VVt”)

This typing system is more complex than the usual
typing systems used routinely in Genetic
Programming, but has the interest of being able to
retain the respective physical dimensions of the
inputs and outputs values of all the operations in a
function. For instance, the following complex but
realistic function handles the following data types:
Mina (Maxt:a (Sqrttf:a (FFTtf:a (Splittt:a

(InSignalt:a))))), and thus provides as final output
one amplitude value “a” from a given input signal
InSignal “t:a”.

4.1.4. Controlling general processing
methods using generic operators and
patterns

The types of data handled by a function are a
signature of the general processing methods used
in the function. For instance, if an operation in the
function provides data of type “f:a” (homogeneous
to a spectrum), this means that the following
operations are computed in the spectral domain.

In order to control globally the processing methods
through the successive types of data handled by the
functions, we have introduced "generic operators"
that stand for one or several random real
operator(s) whose output types are forced.
EDS can deal with three different generic operators
(notated "*", "!", and "?") that have different
functionalities:

"?_T" stands for one operation providing an output
type "T".
For instance, “?_a(Signal)” can be implemented as:
- “Maxa(Signalt:a)”, or
- “Variancea(Signalt:a)”.

"*_T" stands for a composition of several
operations that all provide an output type “T”.
For instance, “*_a(Signal)” can be implemented
as:
- “Squarea (Maxa (Signalt:a))”, or
- “Loga (Squarea (Variancea (Signalt:a)))”.

"!_T" stands for a composition of several operators
that provide a final output type "T".
For instance, “!_a(Signal)” can be implemented as:
- “Variancea (Autocorrelationt:a (Signalt:a))”, or
- “Mina (Maxt:a (Ffttf:a (Splittt:a (Signalt:a))))”.

These generic operators allow specifying locally
the processes to use in a function. By composing
them to write functions patterns, we describe a
global set of processes to apply on an audio signal
to obtain a final value. For instance, the simple
pattern
"?_a (!_Va (Split (*_t:a (Signal))))"
is a translation of the general extraction scheme
presented in 3.1, standing for the following
processes:
- « Apply some transformations on the input signal
in the temporal domain » (*_t:a)
- « Split the resulting signal into frames » (Split)
- « Find a vector of characteristic values - 1 for
each frame » (!_Va)
- « Find one operation to find one relevant
characteristic value for the entire signal » (?_a)

There are various ways to instantiate this pattern,
among which:
- Suma (SquareVa (MeanVa (SplitVt:a (HpFiltert:a

(Signalt:a, 1000Hz))))), or
- Log10a (Variancea (NPeaksVa (SplitVt:a
(Autocorrelationt:a (Signalt:a)))))

Zils et al. EDS: Automatic extraction of music descriptors

AES 116th Convention, Berlin, Germany, 2004 May 8–11

Page 7 of 12

Patterns are specified in the EDS algorithm in
order to guide the search of functions. The simplest
pattern to specify is “!_a”, that means “a function
made of any composition of operators providing one
non-dimensional or amplitude value as final output”.

4.1.5. Heuristics

The system is able to build physically correct
functions by specifying signal processing patterns.
However, the physical correctness is not sufficient
to build relevant functions, by choosing the
optimal operations to solve a given description
problem.
In order to guide the instantiation of the patterns,
we need to introduce knowledge in the system, as
signal processing heuristics. Indeed, heuristics are
a central point in the design of EDS. They
represent the know-how of signal processing
experts, about functions seen a priori, i.e. before
their evaluation. The interest of heuristics is that
they both favor a priori interesting functions, and
rule out obviously non-interesting ones.
A heuristic in EDS associates a score to a potential
composition of operators, between 0 (forbidden
composition) and 10 (very recommended
composition). These scores are used when EDS
builds a new function, to select the candidates
between all the possible operations. Basically, the
heuristics allow to:

- Control the structure of the functions
For instance the number of operations done to
compute the cut-off frequency argument for a
high-pass filter
“HpFilter (InSignal, CutOffFreq)”
can be controlled using the heuristic
“HpFilter (Signal, Branch) => SCORE = Max (0, 5
- Size(Branch))"
The filtering operation will be scored 5 if the cut-
off frequency is a constant value, 4 if it is the
result of one operation, and so on.

- Avoid bad combination of operations
For instance, multiple high-pass filters are avoided
using the heuristic
"HpFilter (HpFilter => SCORE = 1", labeling two
consecutive high-pass filtering as a very bad
composition of operations,
Similarly, filter combination rules can be
translated to the following heuristics
"MpFilter(HpFilter=>3", "LpFilter(HpFilter=>5",
etc.

- Range constant parameters values
For instance, the following heuristic
"Envelope (x, <50 frames) => SCORE = 1"
rules the size of the window when computing an
envelope, and
"HpFilter (x, <100Hz) => 1"
rules the cut-off frequency value of a filter.

- Avoid usually useless operations
For instance the heuristic "X (X (X => SCORE =
2" avoids too many repetitions of operators:, etc.

4.1.6. Automatic construction of functions
using patterns, typing rules, and
heuristics

Using all the previous rules, EDS is able to build
automatically various physically correct functions
from a given signal processing pattern.
The pattern is composed of one input signal, and
several generic operators, real operators, several
numeric values, and constant signals.
The automatic synthesis of functions is performed
in bottom-up fashion, starting from the input
signal, and grafting sequentially the operators one
after the other up to the top of the tree, all the
generic operators being instantiated, i.e. replaced
by real operators (as presented in 4.1.4.).

4.2. Search for optimized features

Once the system has built functions with a correct
type, it evaluates them and tries to improve their
fitness to solve the description problem.

4.2.1. Evaluation of function fitness

To evaluate if a function is relevant, the system
computes this function on the whole learning
database that defines the description problem, and
then compares the values obtained with the labels of
the signals, to check if the former can explain the
latter. Different fitness functions can be computed,
depending on the nature of the descriptor. In our
experiments with regression problems, we compute
fitness as the Pearson correlation coefficient between
the function values and the perceptive values ([14]).
For classification problems, we use the Fisher’s
criterion ([14]) for the function values on the
different class labels, which evaluates how well the
function discriminates between the different classes.

Zils et al. EDS: Automatic extraction of music descriptors

AES 116th Convention, Berlin, Germany, 2004 May 8–11

Page 8 of 12

The system uses then the fitness of the functions as a
criterion in the search algorithm, to find relevant
functions for the problem to solve.

4.2.2. Genetic Search Algorithm

The function search part in EDS consists in
building signal processing functions that are
increasingly relevant, using an algorithm based on
genetic programming, i.e. the application of
genetic search to the world of functions, as
introduced by [10].

Given a description problem for which we seek an
extractor, defined by a database DB containing
labeled audio signals (numeric values or class
labels), the algorithm builds a population of
functions from a pattern P, and tries to improve
them by applying various genetic transformations
on them.

More precisely, the algorithm works as follows:

1. Build the first population P0, of random
functions based on the pattern P

2. Compute the fitness of each function in the
population

3. If (Stop Condition): STOP the algorithm,
and RETURN the best function

4. Else: select the functions with the highest
fitness, and create of a new population Pi+1,
by applying transformations on them

5. Iteration to (2)

The “Stop Condition” is specified using various
combined criteria:

- Maximum number of iteration reached:
the search stops automatically after
population number 1000.

- A relevant function is found: fitness >=
threshold; typically threshold=1, the
function itself is a perfect model of the
descriptor.

- The population does not improve
anymore: fitness of the best function of
population Pi = fitness of the best function
of population Pi-N; typically N=5
unimproved populations.

Running this algorithm once provides one optimal
function to be used in the final model.

Therefore, this algorithm is run N times to build N
optimized functions constituting the final feature
set used in the final model of the descriptor.

4.2.3. Creation of populations by genetic
transformations

During the genetic search, each new population is
created by applying various genetic
transformations on the most relevant functions of
the current population. These transformations aim
at reusing local operations found in relevant
functions, in order to build even more relevant
functions. Three main transformations are used in
EDS: structural cloning, mutation, and crossover.

Structural cloning consists in keeping the tree
structure a function and applying variations on its
constant parameters, such as the cut-off
frequencies of filters or the computation window
sizes.
For example, the function
"Sum (Square (FFT (LpFilter (Signal, 1000Hz))))"
can be cloned as
"Sum (Square (FFT (LpFilter (Signal, 800Hz))))".

Mutation consists in cutting a branch of a function,
and replacing it by another composition of
operators providing a data of the same type.
For example, the function
"Sum (Square (FFT (LpFilter (Signal, 1000Hz))))",
can be mutated into
"Sum (Square (FFT (MpFilter (Signal, 1100Hz,
2200Hz))))".

Finally, crossover consists in cutting a branch from
a function and replacing it by a branch cut from
another function.
For example
"Sum (Square (FFT (LpFilter (Signal, 1000Hz))))"
and "Sum (Autocorrelation (Signal))"
can produce the crossover function
"Sum (Square (FFT (Autocorrelation (Signal))))".

In addition to the genetically transformed
functions, the new population is completed with a
set of new random functions to ensure its diversity
and introduce new operations.

4.2.4. Improvement of the search

Eventually, in order to search for function more
efficiently, rewriting rules and a caching mechanism
have been included in the system.

Rewriting rules are applied to simplify functions
before their evaluation, using a fixed point
mechanism until to obtain a normal form. Unlike

Zils et al. EDS: Automatic extraction of music descriptors

AES 116th Convention, Berlin, Germany, 2004 May 8–11

Page 9 of 12

heuristics, they are not used by the genetic
algorithm to favor combinations, but they:

- Avoid computing several times the same
function with different but equivalent forms.

For example:
"Correlation(x,x)==>Autocorrelation(x)", or
"HpFilter(HpFilter(x,a),b)

==>HpFilter(x,max(a,b))"

- Reduce the computation cost.
For Example: Perseval equality
"Mean(Fft(Square(x))) => Sum(Square (x))"
avoids to compute the "Fft" of a signal.

Finally, a caching mechanism is introduced to
speed up the computation of functions, so that any
costly function is computed once, and reused when
possible.
Every time a new function is computed, all the
intermediate results are stored on separate files.
Finally, the most useful results are kept in
memory, depending on:

- their computation time: results that require a
long computation time are kept in memory,

- their utility: results that are used frequently are
kept,

- their size: the allowable memory being
limited, priority is given to small size results.

For instance: the computation of
"Max (Envelope (Fft (x), 100)"
will store
"x", "100", "Fft(x)", "Envelope (Fft (x), 100)", and
"Max (Envelope (Fft (x), 100)" for each tested
title.

4.3. Final model of the descriptor

After running the genetic search, EDS finds
relevant features well adapted to the description
problem at hand.
These features have now to be combined into an
optimized model of the descriptor, using generic
machine learning techniques (k-Nearest
Neighbours, Neural Networks); the techniques can
also be specific to regression (Linear Regression,
Model Tree, Locally Weighted Regression) or to
classification (Decision Tree, Rule Learner, Naïve
Bayes, Holte’s one-R, Kernel Density Classifier,
Support Vector Machine, Logistic Regression,
Gaussian Mixture Models). Each of these models
carries with it a certain number of parameters such
as the number of neighbours in the k-NN method,
or the number of layers for the Neural Networks.

The processes of 1) selecting the right model and
2) finding the right parameters for this model are
entirely automated in EDS.

The optimization of the model consists in a
complete automatic search on all the available
models for all the available parameters values. The
system evaluates the performance of the models by
cross-validation on the learning database, using
various evaluation criteria such as the rate of good
classifications, the correlation coefficient, or the
kappa statistic ([14]).
The final descriptor model is the best model found,
defined by:

- a set of relevant features
- a modelling technique
- optimized parameters for this technique
- a learning database DB

For instance it can be:
“DescriptorModel = KNN (“Max (Fft (InSignal))”,
“Variance (Autocorrelation (LpFilter (InSignal,
1000Hz)))”, 6 neighbours, DB)”.

The performance of this model is evaluated on a
test database (different from the learning database)
for assessing definitively its performance.

4.4. Self-executable extractor for the
modelled descriptor

To compute the descriptor’s value on a new audio
signal, a executable program that computes the
final model on a .wav signal is generated
automatically. This program computes the values
of the features, then computes the model with these
values as inputs, and finally saves the result (the
value of the descriptor) in an output file.

5. PERFORMANCE OF THE SYSTEM

We present here the performance on the two steps
of EDS:
- Automatic synthesis of relevant features: the
fitness of the best functions found indicates the
capacity of the genetic search algorithm to build
relevant functions regarding a given dataset.
- Descriptor modeling: the quality of the model is
evaluated on a test database (see 4.3).
We compare here the results obtained by the
traditional method using the Mpeg7 LLDs dataset
(called “LLDs”), and by the EDS method on the
following problems: basic frequency extraction,
singing voice detection, musical energy modeling,
and discrimination of natural sounds recorded
indoor or outdoor.

Zils et al. EDS: Automatic extraction of music descriptors

AES 116th Convention, Berlin, Germany, 2004 May 8–11

Page 10 of 12

5.1. Basic problem: Sinus + Colored noise

The problem consists in detecting a sinus between
10 and 1000Hz mixed with a strong colored noise
between 1000-2000Hz, as described in Section 2.2.

Features

As they focus on the most predominant
characteristic of the signal (the noise), the LLDs
yield poor results in detecting the sinus. The best
LLD, Spectral Flatness, has a correlation of 0.63
with the sinus frequencies.
After 10 populations of genetic search, EDS
focuses around the function "MaxPos (FFT
(LpFilter (Signal, fc Hz)))", with different values
of fc, between 50 and 700 Hz. All these values
remove efficiently the colored noise (with a
Butterworth filter), and provide a correlation of
0.99. The correlation does not reach 1 because of
the uncertainty near 1000Hz.

Model

The linear modeling of provides a mean prediction
error of 226Hz for the LLD (Spectral Flatness),
whereas it is 10Hz for the best EDS function.

These results shows that our system is able to find
automatically a correct and almost optimal
preprocessing with the correct parameters (here,
filter ranges) to solve a simple description problem
that LLDs cannot successfully address.

5.2. Subjective problem: Musical energy

The problem consists in providing a model of the
subjective energy of musical extracts, based on the
results of perceptive tests (see [11]). This
descriptor addresses the intuitive difference there
is, for example, between a punchy punk-rock song
with loud saturated guitars and screaming voice
conveys and an acoustic guitar ballad with a soft
voice, at a constant volume level.

The tests conducted consisted in asking users to
label musical extracts of various genres with the
energy they “felt” while listening to the extract,
independently of the listening volume. The
statistical analysis of the results of these perceptive
tests has shown that the musical energy is a
consensual concept, and that most users feel the
same energy while listening to the same songs,
with a of 10 % statistical variance.

We then built a model of this “musical energy”,
using two labeled databases of 200 signals of
length 5s at 11025Hz, one for learning, and the
other for testing the performance of the model.

Features

The best LLD found was “Sum (Fft (Testwav))”,
with correlation=0,5418815 with the learning
database labels, and 0,668248859 with the test
database.
After running EDS feature genetic search
algorithm 50 times, 86% of the functions created
by EDS are better than the best LLD function on
the learning database “Sum (Fft (Testwav))”, and
46% on the test database. The best function found
by EDS is “Sqrt (Percentile (Sqrt (Derivation (Sqrt
(Peaks (Sqrt (Fft (Hann (LpFilter (Testwav,
5387.0)))))))), 75.0))”, with correlation=0,765 on
learn, and 0,812 on test.

The better performance of the features on the test
database shows the generalization capacity of
EDS, that has been able to find general features
even though the learning database was not very
well labeled.

Model

After running a forward features selection ([14]) on
the LLDs, we kept 11 features to build the final
LLD model of musical energy. The best method
found was a linear regression with M5 selection,
that provided a correlation=0.6735 on learn, and
0.7824 on test.
Running the same model with only the best EDS
function provided a correlation=0.763 on learn and
0.8172 on test. Thus this only function was better
than a combination of all LLDs.
After running a forward selection on the EDS
functions, we kept 4 features to build the final EDS
model of musical energy. The best method found
was a locally weighted regression with 2 neighbors
and linear weighting, that provided a
correlation=0.7933 on learn, and 0.8246 on test,
which corresponds to an average model error of
11.4%.

Considering the 10% variance on the perceptive
tests, it can be said that EDS has provided an
almost optimal model of this descriptor.

Zils et al. EDS: Automatic extraction of music descriptors

AES 116th Convention, Berlin, Germany, 2004 May 8–11

Page 11 of 12

5.3. Objective classification problem:
Presence of singing voice

The problem consists in providing a model that
allows detecting the presence of singing voice in
polyphonic audio signals, which is known as being
a difficult description issue (see [12], [13]).

To compute this model, we have built two
databases of 200 audio signals of length 5s at
11025Hz (for learning and testing), labeled with
the 2 classes “Voice” and “No Voice”.

Features

The best LLD found was also “Sum (Fft
(Testwav))”, with fisher=0,306 with the learning
database labels, and 0,216 with the test database.
After running EDS feature genetic search
algorithm 50 times, 60% of the functions created
by EDS are better than the best LLD function
“Sum (Fft (Testwav))”, and 56% on the test
database. The best function found by EDS is
“Power (Abs (Sum (Integration (Integration (Fft
(Sqrt (BpFilter (Sqrt (BpFilter (Sqrt (BpFilter
(Testwav, 739.0, 92.0)), 238.0, 804.0)), 295.0,
1160.0))))))), 3.0)”, with fisher=0,924 on learn,
and 0,785 on test.

Model

After running a forward selection on the LLDs, we
kept 3 features to build the final LLD model of
musical energy. The best method found was a
Holte’s one-R with 13 objects in bucket, that
provided a kappa=0.52 (76% of good
classification) on learn, and 0.41 (70.5%) on test.
Running the same model with only the best EDS
function provided a kappa=0.62 (81% of good
classification) on learn and also 0.62 (81%) on test.
Thus this only function was better than a
combination of all LLDs.
After running a forward selection on the EDS
functions, we kept 6 features to build the final EDS
model of musical energy. The best method found
was a Holte’s one-R with 7 objects in bucket, that
provided a kappa=0.68 (84% of good
classifications) on learn, and only 0.62 (76%) on
test.

The fact that the best EDS function alone provides
a better test performance than the 6 best EDS
functions shows that some functions generated are
probably too specialized, and that a precise model
built on these functions is too close to the learning

database to provide good general results. Thus a
balance has to be found between model precision
and generalization.

5.4. Classification problem with small
databases: Indoor/Outdoor sounds

The problem consists in providing a model that
allows discriminating between natural sounds
recorded outdoor or indoor.
To compute this model, we have built two
databases of 50 audio signals of length 1s at
11025Hz (for learning and testing), labeled with
the 2 classes “Indoor” and “Outdoor”.

Features

The best LLD found was also “High-Frequency-
Content (Testwav)”, with fisher=0.224 with the
learning database labels, and 0,206 with the test
database.
After running EDS feature genetic search
algorithm 30 times, 100% of the functions created
by EDS are better than the best LLD function
“High-Frequency-Content (Testwav)”, on the
learning and on the test database. The best function
found by EDS is “Median (Holes (BpFilter
(Triangle (Testwav), 312.0, 4640.0)))”, with
fisher=1.277 on learn, and 1,023 on test, which is
far better than the best LLD.

Model

After running a forward selection on the LLDs, we
kept 6 features to build the final LLD model of
musical energy. The best method found was a kNN
with 2 neighbours, that provided a kappa=0.85
(92.5% of good classification) on learn, but only
0.56 (78%) on test.
Running the same model with only the best EDS
function provided a kappa=0.77 (88.8% of good
classification) on learn, and still 0.75 (87%) on
test. After running a forward selection on the EDS
functions, we kept 6 features to build the final EDS
model of musical energy. The best method found
was a kNN with 3 neighbours, that provided a
kappa=0.94 (96.3% of good classifications) on
learn, and still 0.84 (92.5%) on test.

These results shows the consistency of the features
found by EDS on small databases, compared to the
LLDs whose models are too specific because they
have to compensate the low relevancy of the
features.

Zils et al. EDS: Automatic extraction of music descriptors

AES 116th Convention, Berlin, Germany, 2004 May 8–11

Page 12 of 12

6. CONCLUSION

We have introduced a new approach for designing
automatically efficient extractors for high-level
audio descriptors. Although the proposed system,
EDS, uses for the moment a limited palette of
signal processing functions, it already produces
results that are better than results obtained using
standard manual approaches in high level
descriptor extraction, in particular using the Mpg7
palette of generic features.
The generality of the approach allows EDS to
address the whole class of extraction problems in
the large, including the distinction between “live”
and studio recording, the discrimination between
simple and generic genres, the modeling of music
danceability or percussivity, etc. The application of
the system to non high-level extraction audio
problems is also under way. Substantial increase in
performance is expected by extending the palette
of signal operators to more refined operators, as
well as in adding more refined heuristics and
rewriting rules to prune the search space.
Finally, a programming language based on EDS
constructs is under way to allow users more
flexibility in the definition and exploitation of the
descriptors obtained.

7. REFERENCES

[1] Eric D. Scheirer. Tempo and beat analysis of
acoustic musical signals. J. Acoust. Soc. Am.
(JASA) 103:1 (Jan 1998), pp 588-601.
[2] Eric D. Scheirer, and Malcolm Slaney.
Construction and evaluation of a robust
multifeature speech/music discriminator. Proc.
ICASSP ’97.
[3] P. Herrera, A. Yeterian, F. Gouyon. Automatic
classification of drum sounds: a comparison of
feature selection methods and classification
techniques. Proceedings of 2nd International
Conference on Music and Artificial Intelligence,
Edinburgh, Scotland, 2002.
[4] Geoffroy Peeters, Xavier Rodet. Automatically
selecting signal descriptors for sound
classification. Proceedings of the 2002 ICMC,
Goteborg (Sweden), September 2002.
[5] Perfecto Herrera, Xavier Serra, Geoffroy
Peeters. Audio descriptors and descriptors schemes
in the context of MPEG-7. Proceedings of the 1999
ICMC, Beijing, China, October 1999.
[6] JJ Aucouturier, François Pachet. Music
similarity measures: what's the use ? In
proceedings of the 3rd international symposium on

music information retrieval (ISMIR02), Paris,
October 2002.
[7] George Tzanetakis, Georg Essl, Perry Cook.
Automatic musical genre classification of audio
signals. Proceedings of 2nd International
Symposium on Music Information Retrieval, pp
205--210, Bloomington, IN, USA, October 2001.
[8] John R. Koza. Genetic Programming: on the
programming of computers by means of natural
selection. Cambridge, MA: The MIT Press.
[9] David J Montana. Strongly typed genetic
programming. In Evolutionary Computation 3-2,
1995, pp 199-230.
[10] David E. Goldberg. Genetic algorithms in
search, optimization and machine learning.
Addison-Wesley Pub. Co. 1989. ISBN:
0201157675.
[11] Aymeric Zils, François Pachet. Extracting
automatically the perceived intensity of music
titles. Proceedings of 6th International Conference
on Digital Audio Effects (DAFX03), London, UK,
September 8-11, 2003.
[12] A.L. Berenzweig, Dan P. W. Ellis. Locating
singing voice segments within music signals. IEEE
workshop on applications of signal processing to
acoustics and audio (WASPAA01), Mohonk NY,
October 2001.
[13] Wu Chou and Liang Gu, "Robust Singing
Detection in Speech/Music Discriminator Design,"
International Conference on Acoustics, Speech,
and Signal Processing (ICASSP 2001), pp.865-
868, Salt Lake City, Utah, USA, May 2001
[14] Fukunaga, K., "Statistical pattern
recognition", Academic press, 1990.

